This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243522 #11 Jun 07 2014 02:45:31 %S A243522 31,181,1039,4591,13687,21589,30211,40771,41641,41947,55441,56437, %T A243522 63559,70867,81307,83407,83869,87649,91639,111229,126199,126499, %U A243522 134287,157999,189559,201307,214129,220699,225751,228559,251431,281557,289717,290839,323767,337639 %N A243522 Primes p such that p^6 - p^5 + 1 and p^6 - p^5 - 1 are both primes. %C A243522 Each term in the sequence yields, by definition, a pair of twin primes. The first term 31 results in 858874531 and 858874529, which are twin primes. %C A243522 Intersection of A243471 and A243472. %H A243522 K. D. Bajpai, <a href="/A243522/b243522.txt">Table of n, a(n) for n = 1..1785</a> %e A243522 31 is prime and appears in the sequence because [31^6 -31^5 + 1 = 858874531] and [31^6 -31^5 - 1 = 858874529] are both primes. %e A243522 181 is prime and appears in the sequence because [181^6 -181^5 + 1 = 34967564082181] and [181^6 -181^5 - 1 = 34967564082179] are both primes. %p A243522 A243522 := proc() local a,b,d; a:=ithprime(n); b:= a^6-a^5+1; d:= a^6-a^5-1; if isprime (b)and isprime (d) then RETURN (a); fi; end: seq(A243522 (), n=1..30000); %t A243522 c = 0; a = 2; Do[k = Prime[n]; If[PrimeQ[k^6 - k^5 + 1] && PrimeQ[k^6 - k^5 - 1], c++; Print[c, " ", k]], {n, 1, 2000000}]; %Y A243522 Cf. A000040, A001097, A001359, A006512, A238136. %K A243522 nonn %O A243522 1,1 %A A243522 _K. D. Bajpai_, Jun 06 2014