cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243524 Decimal expansion of the expectation of the maximum of a size 7 sample from a normal (0,1) distribution.

This page as a plain text file.
%I A243524 #7 Jun 06 2014 08:21:32
%S A243524 1,3,5,2,1,7,8,3,7,5,6,0,6,9,0,4,3,9,9,2,2,8,9,2,2,1,6,6,8,2,8,5,7,7,
%T A243524 3,4,5,2,9,3,2,8,5,8,4,3,5,0,2,1,9,2,2,0,6,0,8,3,4,6,8,3,5,9,6,2,3,9,
%U A243524 5,3,7,4,9,2,2,5,7,3,7,1,9,8,8,7,1,8,0,1,4,2,1,1,6,8,2,4,0,3,0,6
%N A243524 Decimal expansion of the expectation of the maximum of a size 7 sample from a normal (0,1) distribution.
%D A243524 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.16 Extreme value constants, p. 365.
%F A243524 (21*(Pi*(Pi-5*arccsc(sqrt(3))) + 5*integral_(x=0..arccsc(sqrt(3)))(arcsin(sqrt(3)*sqrt(1/(8-tan(x)^2))))))/(2*Pi^(5/2)).
%e A243524 1.3521783756069043992289221668285773452932858435...
%t A243524 digits = 100; mu[7] = (21*(Pi*(Pi - 5*ArcCsc[Sqrt[3]]) + 5*NIntegrate[ ArcSin[Sqrt[3]*Sqrt[1/(8 - Tan[x]^2)]], {x, 0, ArcCsc[Sqrt[3]]}, WorkingPrecision -> digits + 5]))/(2* Pi^(5/2)); RealDigits[mu[7], 10, digits] // First
%Y A243524 Cf. A087197, A243446, A243448, A243453, A243523.
%K A243524 nonn,cons
%O A243524 1,2
%A A243524 _Jean-François Alcover_, Jun 06 2014