A243525 Decimal expansion of the variance of the maximum of a size 6 sample from a normal (0,1) distribution.
4, 1, 5, 9, 2, 7, 1, 0, 8, 9, 8, 3, 2, 4, 8, 1, 1, 9, 1, 8, 1, 4, 0, 9, 0, 5, 8, 6, 0, 1, 8, 9, 3, 4, 2, 4, 0, 8, 2, 6, 3, 7, 7, 9, 0, 4, 2, 0, 3, 4, 6, 2, 9, 9, 4, 6, 2, 3, 7, 0, 2, 8, 5, 5, 8, 1, 1, 5, 5, 3, 1, 7, 9, 5, 1, 9, 4, 4, 9, 8, 5, 5, 3, 5, 0, 7, 6, 3, 7, 4, 4, 8, 0, 9, 6, 7, 7, 9, 5, 1
Offset: 0
Examples
0.415927108983248119181409058601893424...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.16 Extreme value constants, p. 365.
Programs
-
Mathematica
digits = 100; v[6] = -((225*(Pi*(Pi - 4*ArcCsc[Sqrt[3]]) + 2*NIntegrate[ArcSin[Sqrt[3]*Sqrt[1/(8 - Tan[x]^2)]], {x, 0, ArcCsc[Sqrt[3]]}, WorkingPrecision -> digits+5])^2)/(4*Pi^5)) + (5*Sqrt[3]*(Pi - 3*ArcCsc[2*Sqrt[2/3]]))/Pi^2 + 1; RealDigits[v[6], 10, digits] // First
Formula
-((225*(Pi*(Pi-4*arccsc(Sqrt(3))) + 2*integral_(x=0..arccsc(sqrt(3)))(arcsin(sqrt(3)*sqrt(1/(8-tan(x)^2)))))^2)/(4*Pi^5))+(5*sqrt(3)*(Pi-3*arccsc(2*sqrt(2/3))))/Pi^2+1