A243533 Decimal expansion of 'c', an asymptotic constant related to a variation of the "Secretary problem" with a uniform distribution.
1, 3, 5, 3, 1, 3, 0, 2, 7, 2, 2, 9, 5, 9, 3, 3, 2, 8, 1, 6, 5, 2, 9, 4, 4, 0, 3, 2, 4, 9, 2, 2, 5, 9, 6, 2, 6, 9, 0, 8, 7, 9, 0, 4, 2, 4, 3, 7, 1, 9, 1, 1, 2, 6, 4, 6, 1, 2, 0, 1, 7, 2, 2, 6, 3, 3, 0, 9, 3, 7, 0, 1, 6, 4, 8, 7, 3, 5, 1, 8, 4, 2, 2, 3, 9, 6, 4, 3, 0, 6, 7, 4, 8, 6, 0, 1, 5, 4, 8, 7, 4, 6, 0, 1, 4
Offset: 1
Examples
1.3531302722959332816529440324922596269...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.15 Optimal stopping constants, p. 362.
Links
- Eric Weisstein's MathWorld, Sultan's Dowry Problem.
- Wikipedia, Secretary problem.
Programs
-
Mathematica
digits = 65; c = 2*NSum[Log[k]/(k^2 - 1), {k, 3, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 10^4, Method -> {"EulerMaclaurin", Method -> {"NIntegrate", "MaxRecursion" -> 10, Method -> "DoubleExponential"}}] - (Log[2]/3); RealDigits[c, 10, digits] // First
Formula
log(A242672).
2*Sum_{k >= 3}(log(k)/(k^2-1)) - log(2)/3.