This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243535 #37 Nov 19 2022 21:08:15 %S A243535 2,3,5,7,13,17,19,22,31,33,41,55,61,71,77,101,113,121,131,151,181,191, %T A243535 199,211,311,313,331,661,811,881,911,919,991,1111,1117,1151,1171,1181, %U A243535 1511,1777,1811,1999,2111,2221,3313,3331,4111,4441,6661,7177,7717,8111 %N A243535 Numbers whose list of divisors contains 2 distinct digits (in base 10). %C A243535 Numbers k such that A037278(k), A176558(k) and A243360(k) contain 2 distinct digits. %C A243535 Many of the composite terms are in A203897. - _Charles R Greathouse IV_, Sep 06 2016 %C A243535 Terms are either repdigit numbers (A010785) or contain only 1 and a single other digit. - _Michael S. Branicky_, Nov 16 2022 %H A243535 David A. Corneth, <a href="/A243535/b243535.txt">Table of n, a(n) for n = 1..10000</a> (first 4317 terms from Robert Israel) %e A243535 121 is in the sequence because the list of divisors of 121, i.e., (1, 11, 121), contains 2 distinct digits (1, 2). %p A243535 dmax:= 6: # get all terms of <= dmax digits %p A243535 Res:= {}: %p A243535 for a in [0,$2..9] do %p A243535 S:= {0}: %p A243535 for d from 1 to dmax do %p A243535 S:= map(t -> (10*t+1,10*t+a), S); %p A243535 Res:= Res union select(filter, S) %p A243535 od %p A243535 od: %p A243535 sort(convert(Res,list)): # _Robert Israel_, Sep 05 2016 %t A243535 Select[Range[9000],Length[Union[Flatten[IntegerDigits/@Divisors[ #]]]] == 2&] (* _Harvey P. Dale_, Dec 14 2017 *) %o A243535 (Excel) [Row n = 1..10000; Column A: A(n) = A095048(n); Column B: B(n) = IF(A(n)=2;A(n)); Arrangement of column B] %o A243535 (PARI) isok(n) = vd = []; fordiv(n, d, vd = concat(vd, digits(d))); #Set(vd) == 2; \\ _Michel Marcus_, Jun 13 2014 %o A243535 (Python) %o A243535 from sympy import divisors %o A243535 from itertools import count, islice, product %o A243535 def ok(n): %o A243535 s = set("1"+str(n)) %o A243535 if len(s) > 2: return False %o A243535 for d in divisors(n, generator=True): %o A243535 s |= set(str(d)) %o A243535 if len(s) > 2: return False %o A243535 return len(s) == 2 %o A243535 def agen(): %o A243535 yield from [2, 3, 5, 7] %o A243535 for d in count(2): %o A243535 s = set() %o A243535 for first, other in product("123456789", "0123456789"): %o A243535 for p in product(sorted(set(first+other)), repeat=d-1): %o A243535 if other not in p: continue %o A243535 t = int(first+"".join(p)) %o A243535 if ok(t): s.add(t) %o A243535 yield from sorted(s) %o A243535 print(list(islice(agen(), 52))) # _Michael S. Branicky_, Nov 16 2022 %Y A243535 Cf. A095048, A037278, A176558, A243360. %Y A243535 Sequences of numbers n such that the list of divisors of n contains k distinct digits for 1 <= k <= 10: k = 1: A243534; k = 2: A243535; k = 3: A243536; k = 4: A243537; k = 5: A243538; k = 6: A243539; k = 7: A243540; k = 8: A243541; k = 9: A243542; k = 10: A095050. %Y A243535 Cf. A243543 (the smallest number m whose list of divisors contains n distinct digits). %K A243535 nonn,base %O A243535 1,1 %A A243535 _Jaroslav Krizek_, Jun 13 2014