This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243583 #34 May 22 2025 10:21:38 %S A243583 3,7,19,79,103,109,277,379,487,967,1489,1663,1867,2857,3019,3253,3613, %T A243583 3697,4003,4783,4969,5413,5437,5503,5569,5647,5923,7477,7669,7687, %U A243583 7699,7789,7933,8233,8779,9007,9319,9547,9739,10597,11257,11467,11593,11827,12037 %N A243583 Primes p for which p + 4 and p^3 + 4 are primes. %C A243583 This is a subsequence of: %C A243583 A023200: Primes p such that p + 4 is also prime. %C A243583 A073573: Numbers n such that n^3 + 4 is prime. %H A243583 Abhiram R Devesh, <a href="/A243583/b243583.txt">Table of n, a(n) for n = 1..1000</a> %e A243583 p = 3 is in this sequence because p + 4 = 7 (prime) and p^3 + 4 = 31 (prime). %e A243583 p = 7 is in this sequence because p + 4 = 11 (prime) and p^3 + 4 = 347 (prime). %o A243583 (Python) %o A243583 import sympy.ntheory as snt %o A243583 n=2 %o A243583 while n>1: %o A243583 n1=n+4 %o A243583 n2=((n**3)+4) %o A243583 ##Check if n1 and n2 are also primes. %o A243583 if snt.isprime(n1)== True and snt.isprime(n2)== True: %o A243583 print(n, " , " , n1, " , ", n2) %o A243583 n=snt.nextprime(n) %o A243583 (PARI) s=[]; forprime(p=2, 20000, if(isprime(p+4) && isprime(p^3+4), s=concat(s, p))); s \\ _Colin Barker_, Jun 11 2014 %Y A243583 Cf. A023200, A073573. %K A243583 nonn,easy %O A243583 1,1 %A A243583 _Abhiram R Devesh_, Jun 09 2014