cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243589 Numbers returned when each binary digit of n is replaced by the sum modulo 2 of the digits to its (wrapped) left and (wrapped) right.

Original entry on oeis.org

0, 0, 0, 3, 5, 6, 0, 5, 15, 0, 10, 15, 5, 10, 0, 9, 27, 12, 30, 3, 17, 6, 20, 29, 15, 24, 10, 23, 5, 18, 0, 17, 51, 20, 54, 27, 57, 30, 60, 5, 39, 0, 34, 15, 45, 10, 40, 57, 27, 60, 30, 51, 17, 54, 20, 45, 15, 40, 10, 39, 5, 34, 0, 33, 99, 36, 102, 43, 105, 46
Offset: 1

Views

Author

Anthony Sand, Jun 07 2014

Keywords

Comments

a(n) = ror(n) XOR rol(n), where ror(x)=A038572(x) is x rotated one binary place to the right, rol(x)=A006257(x) is x rotated one binary place to the left, and XOR is the binary exclusive-or operator. - Alex Ratushnyak, May 24 2016
Numbers returned by the following function: take the t binary digits of n, d(1)..d(t), and replace each with the sum d(i) = (d(i-1) + d(i+1)) mod 2, where (i-1 = 0) maps to t and (i+1 > t) maps to 1.

Examples

			For 1, the function returns d(1) = (d(1) + d(1)) mod 2 = (1 + 1) mod 2 = 0.
For 5, the initial digits are (1,0,1).
d(1) = (d(3) + d(2)) mod 2 = (1 + 0) mod 2 = 1; d(2) = (d(1) + d(3)) mod 2 = (1 + 1) mod 2 = 0; d(3) = (d(2) + d(1)) mod 2 = (0 + 1) mod 2 = 1.
The function returns (1,0,1) = 101 = 5 in base 10.
		

Crossrefs

Programs

  • Python
    for n in range(1, 100):
        BL = len(bin(n))-2
        x = (n>>1) + ((n&1) << (BL-1))   # A038572(n)
        x^= (n*2) - (1<A006257(n)  for n>0
        print(x, end=', ')

Formula

for digits d(1)..d(t), d(i) = (d(i-1) + d(i+1)) mod 2, where (i-1 = 0) -> t, (i+1 > t) -> 1.