This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243595 #20 Sep 08 2022 08:46:08 %S A243595 2,5,7,23,37,43,47,83,103,107,113,127,197,373,433,463,467,523,547,587, %T A243595 593,617,733,743,797,863,877,887,953,1097,1163,1213,1297,1427,1493, %U A243595 1567,1583,1657,1667,1693,1783,1877,1987,2053,2063,2087,2207,2357,2557,2753 %N A243595 Primes p such that 3 + 2*p^2 is also prime. %C A243595 Corresponding primes 3 + 2*p^2 are congruent to 5 modulo 6. %H A243595 Bruno Berselli, <a href="/A243595/b243595.txt">Table of n, a(n) for n = 1..1000</a> %e A243595 2 is in the sequence because 3+2*2^2 = 11 is prime; also, for the comment, 11 = 6+5. %e A243595 5 is in the sequence because 3+2*5^2 = 53 is prime, also 53 = 6*8+5. %e A243595 7 is in the sequence because 3+2*7^2 = 101 is prime, also 101 = 6*16+5. %t A243595 Select[Prime[Range[500]], PrimeQ[3 + 2 #^2] &] (* _Bruno Berselli_, Jun 07 2014 *) %o A243595 (PARI) s=[]; forprime(p=2, 4000, if(isprime(3+2*p^2), s=concat(s, p))); s \\ _Colin Barker_, Jun 07 2014 %o A243595 (Magma) [p: p in PrimesUpTo(4000) | IsPrime(3+2*p^2)]; // _Bruno Berselli_, Jun 07 2014 %o A243595 (Sage) [p for p in primes(4000) if is_prime(3+2*p^2)] # _Bruno Berselli_, Jun 07 2014 %Y A243595 Cf. A002476, A033203, A153507, A161724. %K A243595 nonn,easy %O A243595 1,1 %A A243595 _Zak Seidov_, Jun 07 2014