A243601 Number of length n+2 0..4 arrays with no three elements in a row with pattern aba (with a!=b) and new values 0..4 introduced in 0..4 order.
4, 10, 29, 96, 349, 1350, 5425, 22297, 92841, 389456, 1640630, 6927937, 29294645, 123967625, 524830618, 2222483751, 9412820990, 39869076285, 168877805414, 715352976032, 3030223762722, 12836088840031, 54374194848619
Offset: 1
Keywords
Examples
Some solutions for n=5: ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..1....1....0....1....1....1....1....1....1....1....1....1....1....1....1....1 ..1....2....1....2....2....1....1....2....1....2....2....2....2....2....2....2 ..1....3....1....3....3....2....2....0....0....3....3....3....3....3....3....2 ..2....1....0....3....1....2....3....3....2....1....1....1....0....3....0....3 ..3....2....2....0....2....1....0....3....3....1....4....4....0....3....1....3 ..1....3....2....2....4....3....2....3....4....1....2....4....2....4....3....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 4 of A243607.
Formula
Empirical: a(n) = 8*a(n-1) - 18*a(n-2) + 5*a(n-3) + 17*a(n-4) - 4*a(n-5) - 6*a(n-6) - a(n-7).
Empirical g.f.: x*(4 - 22*x + 21*x^2 + 24*x^3 - 15*x^4 - 13*x^5 - 2*x^6) / ((1 - x)*(1 - x - x^2)*(1 - 2*x - x^2)*(1 - 4*x - x^2)). - Colin Barker, Nov 02 2018