cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243601 Number of length n+2 0..4 arrays with no three elements in a row with pattern aba (with a!=b) and new values 0..4 introduced in 0..4 order.

Original entry on oeis.org

4, 10, 29, 96, 349, 1350, 5425, 22297, 92841, 389456, 1640630, 6927937, 29294645, 123967625, 524830618, 2222483751, 9412820990, 39869076285, 168877805414, 715352976032, 3030223762722, 12836088840031, 54374194848619
Offset: 1

Views

Author

R. H. Hardin, Jun 07 2014

Keywords

Examples

			Some solutions for n=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....0....1....1....1....1....1....1....1....1....1....1....1....1....1
..1....2....1....2....2....1....1....2....1....2....2....2....2....2....2....2
..1....3....1....3....3....2....2....0....0....3....3....3....3....3....3....2
..2....1....0....3....1....2....3....3....2....1....1....1....0....3....0....3
..3....2....2....0....2....1....0....3....3....1....4....4....0....3....1....3
..1....3....2....2....4....3....2....3....4....1....2....4....2....4....3....2
		

Crossrefs

Column 4 of A243607.

Formula

Empirical: a(n) = 8*a(n-1) - 18*a(n-2) + 5*a(n-3) + 17*a(n-4) - 4*a(n-5) - 6*a(n-6) - a(n-7).
Empirical g.f.: x*(4 - 22*x + 21*x^2 + 24*x^3 - 15*x^4 - 13*x^5 - 2*x^6) / ((1 - x)*(1 - x - x^2)*(1 - 2*x - x^2)*(1 - 4*x - x^2)). - Colin Barker, Nov 02 2018