A243607 T(n,k) = Number of length n+2 0..k arrays with no three elements in a row with pattern aba (with a!=b) and new values 0..k introduced in 0..k order.
3, 4, 5, 4, 9, 8, 4, 10, 21, 13, 4, 10, 28, 50, 21, 4, 10, 29, 85, 120, 34, 4, 10, 29, 96, 269, 289, 55, 4, 10, 29, 97, 349, 870, 697, 89, 4, 10, 29, 97, 365, 1350, 2844, 1682, 144, 4, 10, 29, 97, 366, 1511, 5425, 9346, 4060, 233, 4, 10, 29, 97, 366, 1533, 6726, 22297, 30792
Offset: 1
Examples
Some solutions for n=5, k=4 ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..1....1....0....1....0....1....1....0....0....1....1....1....1....1....0....1 ..1....1....1....1....1....2....2....0....0....2....2....2....2....2....0....1 ..2....0....1....2....2....3....3....0....1....3....2....3....2....2....1....1 ..2....2....1....3....3....1....0....1....2....0....3....4....1....1....2....1 ..3....3....0....1....3....1....4....1....2....0....3....0....3....3....2....1 ..4....1....2....1....0....0....3....0....0....2....3....1....0....3....1....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..9999
Formula
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2),
k=2: a(n) = 3*a(n-1) -a(n-2) -a(n-3),
k=3: a(n) = 5*a(n-1) -5*a(n-2) -3*a(n-3) +3*a(n-4) +a(n-5),
k=4: a(n) = 8*a(n-1) -18*a(n-2) +5*a(n-3) +17*a(n-4) -4*a(n-5) -6*a(n-6) -a(n-7),
k=5: [order 9],
k=6: [order 11],
k=7: [order 13],
k=8: [order 15],
k=9: [order 17].
Comments