A243610 Irregular triangular array of all the integers, each exactly once, ordered as in Comments.
1, 0, 2, -1, 4, -3, -2, 8, -7, -6, -4, 3, 16, -15, -14, -12, -8, 5, 6, 7, 32, -31, -30, -28, -24, -16, -5, 9, 10, 12, 13, 14, 15, 64, -63, -62, -60, -56, -48, -32, -13, -11, -10, -9, 17, 18, 20, 24, 25, 26, 28, 29, 30, 31, 128, -127, -126, -124, -120, -112
Offset: 1
Examples
First 7 rows of the array: 1 0 .... 2 -1 ... 4 -3 ... -2 ... 8 -7 ... -6 ... -4 ... 3 .... 16 -15 .. -14 .. -12 .. -8 ... 5 .... 6 ... 7 .. 32 -31 .. -30 .. -28 .. -24 .. -16 .. -5 .. 9 .. 10 . 12 . 13 . 14 . 15 . 64
Links
- Clark Kimberling, Table of n, a(n) for n = 1..4000
- Danielle Cox and Karyn McLellan, A Problem on Generation Sets Containing Fibonacci Numbers, Fibonacci Quart. 55 (2017), no. 2, 105-113.
Programs
-
Mathematica
z = 12; g[1] = {1}; f1[x_] := 2 x; f2[x_] := 1 - x; h[1] = g[1]; b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]]]]; h[n_] := h[n] = Union[h[n - 1], g[n - 1]]; g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]] u = Table[g[n], {n, 1, 12}] v = Flatten[u]
Comments