This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243611 #5 Jun 11 2014 21:19:24 %S A243611 1,1,1,2,1,1,3,2,1,2,3,4,3,2,1,1,3,5,5,5,3,4,3,2,1,2,3,4,4,7,8,7,6,5, %T A243611 5,5,3,4,3,2,1,1,3,5,5,5,7,8,9,7,11,11,9,7,4,7,8,7,6,5,5,5,3,4,3,2,1, %U A243611 2,3,4,4,7,8,7,6,5,10,13,12,11,12,13,14 %N A243611 Irregular triangular array of denominators of all rational numbers ordered as in Comments. %C A243611 Let F = A000045 (the Fibonacci numbers). Row n of the array to be generated consists of F(n-1) nonnegative rationals together with F(n-1) negative rationals. The nonnegatives, for n >=3, are x + 1 from the F(n-2) nonnegative numbers x in row n-1, together with x/(x + 1) from the F(n-3) nonnegative numbers x in row n-2. The negatives in row n are the negative reciprocals of the positives in row n. %H A243611 Clark Kimberling, <a href="/A243611/b243611.txt">Table of n, a(n) for n = 1..3000</a> %e A243611 First 6 rows of the array of all rationals: %e A243611 0/1 %e A243611 -1/1 .. 1/1 %e A243611 -1/2 .. 2/1 %e A243611 -2/1 .. -1/3 .. 1/2 ... 3/1 %e A243611 -3/2 .. -2/3 .. -1/4 .. 2/3 ... 3/2 ... 4/1 %e A243611 -3/1 .. -4/3 .. -3/5 .. -2/5 .. -1/5 .. 1/3 . 3/4 . 5/3 . 5/2 . 5/1 %e A243611 The denominators, by rows: 1,1,1,2,1,1,3,2,1,2,3,4,3,2,1,1,3,5,5,3,4,3,2,1,... %t A243611 z = 12; g[1] = {0}; f1[x_] := x + 1; f2[x_] := -1/(x + 1); h[1] = g[1]; %t A243611 b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]]]]; %t A243611 h[n_] := h[n] = Union[h[n - 1], g[n - 1]]; %t A243611 g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]] %t A243611 u = Table[g[n], {n, 1, z}] %t A243611 v = Table[Reverse[Drop[g[n], Fibonacci[n - 1]]], {n, 2, z}] %t A243611 Delete[Flatten[Denominator[u]], 6] (* A243611 *) %t A243611 Delete[Flatten[Numerator[u]], 6] (* A243612 *) %t A243611 Delete[Flatten[Denominator[v]], 2] (* A243613 *) %t A243611 Delete[Flatten[Numerator[v]], 2] (* A243614 *) %t A243611 ListPlot[g[20]] %Y A243611 Cf. A243612, A243613, A243614, A226130, A000045. %K A243611 nonn,easy,tabf,frac %O A243611 1,4 %A A243611 _Clark Kimberling_, Jun 08 2014