A243635 Number of length n+2 0..4 arrays with no three unequal elements in a row and new values 0..4 introduced in 0..4 order.
4, 9, 21, 51, 127, 324, 844, 2242, 6062, 16655, 46411, 130937, 373349, 1074194, 3114146, 9085176, 26643492, 78470989, 231925649, 687430207, 2042284587, 6078844480, 18121207896, 54086361422, 161592030394, 483170313579
Offset: 1
Keywords
Examples
Some solutions for n=6: ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..0....1....0....1....0....0....0....1....0....1....1....1....0....0....1....1 ..1....1....1....1....1....0....1....1....1....1....0....0....1....1....0....1 ..0....0....1....1....1....0....0....1....0....1....0....1....0....1....1....2 ..1....1....1....1....2....1....0....2....0....0....2....0....0....2....0....1 ..0....1....2....2....2....1....1....2....1....0....2....0....2....2....0....1 ..0....1....1....2....1....1....1....0....1....0....0....0....2....0....0....0 ..2....1....2....3....2....2....0....0....1....0....0....1....2....0....0....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 4 of A243641.
Formula
Empirical: a(n) = 7*a(n-1) - 14*a(n-2) + 21*a(n-4) - 7*a(n-5) - 6*a(n-6).
Empirical g.f.: x*(4 - 19*x + 14*x^2 + 30*x^3 - 20*x^4 - 12*x^5) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 - 3*x)*(1 - 2*x - x^2)). - Colin Barker, Nov 02 2018