A243637 Number of length n+2 0..6 arrays with no three unequal elements in a row and new values 0..6 introduced in 0..6 order.
4, 9, 21, 51, 127, 324, 844, 2243, 6073, 16737, 46905, 133555, 386047, 1131958, 3364454, 10129563, 30871733, 95176427, 296618011, 933821451, 2967726939, 9514201392, 30747183016, 100097739315, 328049191105, 1081610514581
Offset: 1
Keywords
Examples
Some solutions for n=6: ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..1....1....0....1....1....0....0....0....1....1....1....1....1....1....1....1 ..1....0....1....1....1....1....0....1....1....1....1....0....0....1....1....1 ..2....0....1....0....1....0....1....1....1....1....2....0....1....2....0....0 ..1....1....1....0....0....0....1....0....2....2....2....1....1....2....0....1 ..2....1....1....0....1....1....2....1....2....2....2....0....0....2....2....1 ..2....2....2....0....0....0....2....0....1....2....3....0....0....1....0....1 ..1....2....2....1....0....0....0....0....1....1....2....2....2....2....0....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 6 of A243641.
Formula
Empirical: a(n) = 11*a(n-1) - 39*a(n-2) + 21*a(n-3) + 151*a(n-4) - 217*a(n-5) - 181*a(n-6) + 339*a(n-7) + 130*a(n-8) - 154*a(n-9) - 60*a(n-10).
Empirical g.f.: x*(4 - 35*x + 78*x^2 + 87*x^3 - 408*x^4 - 16*x^5 + 668*x^6 + 57*x^7 - 368*x^8 - 120*x^9) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 - 3*x)*(1 - 2*x - x^2)*(1 - 2*x - 2*x^2)*(1 - 2*x - 5*x^2)). - Colin Barker, Nov 02 2018