This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243651 #6 Jun 08 2014 17:19:52 %S A243651 0,1,4,9,11,12,15,16,20,25,27,36,44,45,47,48,49,53,60,64,69,75,80,81, %T A243651 92,93,99,100,103,108,111,115,121,124,125,132,135,144,148,155,163,165, %U A243651 169,176,177,180,185,188,192,196,199,201,207,212,213,220,225,236,240,243,256,257,267,268,269,275 %N A243651 Nonnegative integers of the form x^2+11y^2. %C A243651 Discriminant -44. %H A243651 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %p A243651 fd:=proc(a,b,c,M) local dd,xlim,ylim,x,y,t1,t2,t3,t4,i; %p A243651 dd:=4*a*c-b^2; %p A243651 if dd<=0 then error "Form should be positive definite."; break; fi; %p A243651 t1:={}; %p A243651 xlim:=ceil( sqrt(M/a)*(1+abs(b)/sqrt(dd))); %p A243651 ylim:=ceil( 2*sqrt(a*M/dd)); %p A243651 for x from 0 to xlim do %p A243651 for y from -ylim to ylim do %p A243651 t2 := a*x^2+b*x*y+c*y^2; %p A243651 if t2 <= M then t1:={op(t1),t2}; fi; od: od: %p A243651 t3:=sort(convert(t1,list)); %p A243651 t4:=[]; %p A243651 for i from 1 to nops(t3) do %p A243651 if isprime(t3[i]) then t4:=[op(t4),t3[i]]; fi; od: %p A243651 [[seq(t3[i],i=1..nops(t3))], [seq(t4[i],i=1..nops(t4))]]; %p A243651 end; %p A243651 fd(1,0,11,500); %Y A243651 Primes: A033209. %K A243651 nonn %O A243651 0,3 %A A243651 _N. J. A. Sloane_, Jun 08 2014