A243663 Triangle read by rows: the reversed x = 1+q Narayana triangle at m=3.
1, 4, 1, 22, 11, 1, 140, 105, 21, 1, 969, 969, 306, 34, 1, 7084, 8855, 3850, 700, 50, 1, 53820, 80730, 44850, 11500, 1380, 69, 1, 420732, 736281, 498771, 166257, 28665, 2457, 91, 1, 3362260, 6724520, 5379616, 2215136, 503440, 62930, 4060, 116, 1
Offset: 1
Examples
Triangle begins: 1 4, 1 22, 11, 1 140, 105, 21, 1 969, 969, 306, 34, 1 7084, 8855, 3850, 700, 50, 1 ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..11325
- Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
- J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962, 2014. See Fig. 11.
Programs
-
Mathematica
T[m_][n_, k_] := Binomial[(m + 1) n + 1 - k, n - k] Binomial[n, k - 1]/n; Table[T[3][n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 12 2019 *)
Formula
T(n,k) = binomial(4*n+1-k,n-k) * binomial(n,k-1) / n for 1 <= k <= n, more generally: T_m(n,k) = binomial((m+1)*n+1-k,n-k) * binomial(n,k-1) / n for 1 <= k <= n and some fixed integer m > 1. - Werner Schulte, Nov 22 2018
Extensions
More terms from Werner Schulte, Nov 22 2018
Comments