This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243668 #40 Aug 08 2023 07:57:41 %S A243668 1,1,7,69,793,9946,131993,1822288,25904165,376601883,5573626462, %T A243668 83692267478,1271883556731,19525467196176,302346907361688, %U A243668 4716814859429384,74065892877777885,1169701519598447641,18566836447453815317,296053851068485920563,4739945317989532651858 %N A243668 Number of Sylvester classes of 5-packed words of degree n. %C A243668 See Novelli-Thibon (2014) for precise definition. %H A243668 Seiichi Manyama, <a href="/A243668/b243668.txt">Table of n, a(n) for n = 0..812</a> %H A243668 J.-C. Novelli and J.-Y. Thibon, <a href="http://arxiv.org/abs/1403.5962">Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions</a>, arXiv preprint arXiv:1403.5962 [math.CO], 2014. See Eq. (185), p. 47 and Fig. 17. %F A243668 Novelli-Thibon give an explicit formula in Eq. (182). %F A243668 From _Seiichi Manyama_, Jul 26 2020: (Start) %F A243668 G.f. A(x) satisfies: A(x) = 1 - x * A(x)^5 * (1 - 2 * A(x)). %F A243668 a(n) = (-1)^n * Sum_{k=0..n} (-2)^k * binomial(n,k) * binomial(5*n+k+1,n)/(5*n+k+1). %F A243668 a(n) = ( (-1)^n / (5*n+1) ) * Sum_{k=0..n} (-2)^(n-k) * binomial(5*n+1,k) * binomial(6*n-k,n-k). (End) %F A243668 a(n) ~ sqrt(27851068 + 7443921*sqrt(14)) * 5^(5*n - 13/2) / (sqrt(7*Pi) * n^(3/2) * 2^(2*(1 + n)) * (108007 - 28854*sqrt(14))^(n - 1/2)). - _Vaclav Kotesovec_, Jul 31 2021 %F A243668 a(n) = (1/n) * Sum_{k=0..n-1} binomial(n,k) * binomial(6*n-k,n-1-k) for n > 0. - _Seiichi Manyama_, Aug 08 2023 %t A243668 P[n_, m_, x_] := 1/(m n + 1) Sum[Binomial[m n + 1, k] Binomial[(m + 1) n - k, n - k] (1 - x)^k x^(n - k), {k, 0, n}]; %t A243668 a[n_] := P[n, 5, 2]; %t A243668 a /@ Range[20] (* _Jean-François Alcover_, Jan 28 2020 *) %o A243668 (PARI) a(n) = my(A=1+x*O(x^n)); for(i=0, n, A=1-x*A^5*(1-2*A)); polcoeff(A, n); \\ _Seiichi Manyama_, Jul 26 2020 %o A243668 (PARI) a(n) = (-1)^n*sum(k=0, n, (-2)^k*binomial(n, k)*binomial(5*n+k+1, n)/(5*n+k+1)); \\ _Seiichi Manyama_, Jul 26 2020 %o A243668 (PARI) a(n) = (-1)^n*sum(k=0, n, (-2)^(n-k)*binomial(5*n+1, k)*binomial(6*n-k, n-k))/(5*n+1); \\ _Seiichi Manyama_, Jul 26 2020 %Y A243668 Column k=5 of A336573. %Y A243668 Cf. A243667. %K A243668 nonn %O A243668 0,3 %A A243668 _N. J. A. Sloane_, Jun 14 2014 %E A243668 More terms from _Jean-François Alcover_, Jan 28 2020 %E A243668 a(0)=1 prepended by _Seiichi Manyama_, Jul 25 2020