cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243675 Number of hypoplactic classes of 3-parking functions of length n.

Original entry on oeis.org

1, 1, 7, 67, 741, 8909, 113107, 1492103, 20251945, 280978681, 3967031839, 56811348235, 823250855181, 12049087175493, 177857857845675, 2644773866954255, 39581787842355409, 595745692419162737, 9011736489133233463, 136932249972928786387, 2089082351509217490613
Offset: 0

Views

Author

N. J. A. Sloane, Jun 14 2014

Keywords

Comments

See Novelli-Thibon (2014) for precise definition.
This is almost certainly the sequence of small 4-Schroeder numbers as defined by Yang-Jiang (2021). It would be nice to have a proof. Then we could confirm Weiner's conjectured formula, and extend the sequence. Yang & Jiang (2021) give an explicit formula for the small m-Schroeder numbers in Theorems 2.4 and 2.9. - N. J. A. Sloane, Mar 28 2021
This is also the small 4-Schroeder numbers defined by Yang and Jiang (2021) in Theorems 2.4 and 2.9. - Jun Yan, Apr 13 2024

References

  • Sheng-Liang Yang and Mei-yang Jiang, The m-Schröder paths and m-Schröder numbers, Disc. Math. (2021) Vol. 344, Issue 2, 112209. doi:10.1016/j.disc.2020.112209. See Table 1.

Crossrefs

The sequences listed in Yang-Jiang's Table 1 appear to be A006318, A001003, A027307, A034015, A144097, A243675, A260332, A243676. - N. J. A. Sloane, Mar 28 2021
Apparently, a(n) = A144097/2, apart from the initial term. - N. J. A. Sloane, Mar 28 2021 [This is for n > 0 indeed the case. - Jun Yan, Apr 13 2024]

Programs

  • Maple
    a := proc(n) option remember; if n <= 1 then return 1 fi;
    -((945*n^5 - 5481*n^4 + 11685*n^3 - 11091*n^2 + 4470*n - 600)*a(n - 2) +
    (-15610*n^5 + 67123*n^4 - 106824*n^3 + 77633*n^2 - 25514*n + 3000)*a(n - 1)) /
    (945*n^5 - 2646*n^4 + 1731*n^3 + 294*n^2 - 204*n) end:
    seq(a(n), n = 0..20);  # Peter Luschny, Apr 13 2024
  • Mathematica
    a[n_] := Hypergeometric2F1[1 - n, -3 n, 2, 2];
    Table[a[n], {n, 0, 20}]  (* Peter Luschny, Apr 13 2024 *)

Formula

a(n) = Sum_{i=0..n} Sum_{j=0..i} (-2)^(n-i)*binomial(i,j)*binomial(3i+j, n)*binomial(n+1,i)/(n+1) (conjectured). - Michael D. Weiner, May 25 2017
From Jun Yan, Apr 13 2024 : (Start)
a(n) = (1/n) * Sum_{k=1..n} binomial(3*n, k - 1) * binomial(n, k)*2^(k - 1) for n>0.
Let D(n) be the set of 3-Dyck paths with n up-steps of size 3, 3n down-steps of size 1 and never go below the x-axis. For every d in D(n), let peak(d) be the number of peaks in d. Then a(n) = Sum_{d in D(n)}2^{peak(d) - 1}. (End)
a(n) = hypergeom([1 - n, -3*n], [2], 2). - Peter Luschny, Apr 13 2024
D-finite with recurrence -15*n*(3*n-1)*(3*n+1)*a(n) +(43*n^3+5403*n^2-8482*n+3228)*a(n-1) +6*(6039*n^3-33372*n^2+60401*n-35858) *a(n-2) +9*(-689*n^3+5938*n^2-17157*n+16616)*a(n-3) +27*(3*n-10)*(3*n-11)*(n-4)*a(n-4)=0. - R. J. Mathar, Apr 14 2024
D-finite with recurrence 3*n*(3*n-1)*(3*n+1)*(35*n^2-98*n+68)*a(n) +(-15610*n^5+67123*n^4-106824*n^3+77633*n^2-25514*n+3000)*a(n-1) +3*(n-2)*(3*n-4)*(3*n-5)*(35*n^2-28*n+5)*a(n-2)=0. - R. J. Mathar, Apr 14 2024

Extensions

Added a(0) = 1. - N. J. A. Sloane, Mar 28 2021
More terms from Jun Yan, Apr 13 2024