This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243676 #54 Apr 13 2024 11:54:25 %S A243676 1,1,9,113,1649,26225,440985,7711009,138792929,2554489505,47854963881, %T A243676 909495557393,17492724268369,339846019830673,6659441891042105, %U A243676 131467175048437569,2612224160086781889,52201209713045788737,1048450942860766632777,21153308764742204273329,428520989167282737342513 %N A243676 Number of hypoplactic classes of 4-parking functions of length n. %C A243676 This is almost certainly the sequence of small 5-Schroeder numbers as defined by Yang-Jiang (2021). It would be nice to have a proof. Then we could confirm Weiner's conjectured formulas, and extend the sequence. Yang & Jiang (2021) give an explicit formula for the small m-Schroeder numbers in Theorems 2.4 and 2.9. - _N. J. A. Sloane_, Mar 28 2021 %C A243676 This is indeed the small 5-Schroeder numbers defined by Yang and Jiang (2021) in Theorems 2.4 and 2.9. - _Jun Yan_, Apr 13 2024 %D A243676 Sheng-Liang Yang and Mei-yang Jiang, The m-Schröder paths and m-Schröder numbers, Disc. Math. (2021) Vol. 344, Issue 2, 112209. doi:10.1016/j.disc.2020.112209. See Table 1. %H A243676 J.-C. Novelli and J.-Y. Thibon, <a href="http://arxiv.org/abs/1403.5962">Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions</a>, arXiv preprint arXiv:1403.5962 [math.CO], 2014-2020. See Fig. 23. %H A243676 Jun Yan, <a href="http://arxiv.org/abs/2404.07958">Results on pattern avoidance in parking functions</a>, arXiv preprint arXiv:2404.07958 [math.CO], 2024. See Theorem 4.4. %F A243676 a(n+1) = Sum_{i=0..n} Sum_{j=0..i} (-2)^(n-i)*binomial(i,j)*binomial(4*i+j, n)*binomial(n+1,i)/(n+1) (conjectured). - _Michael D. Weiner_, May 25 2017 %F A243676 a(n) = Sum_{i=1..n} binomial(4*n, i-1)*binomial(n, i)*2^(i-1)/n (conjectured). - _Michael D. Weiner_, Jul 24 2019 [This is correct for n>0 - _Jun Yan_, Apr 13 2024] %F A243676 Let D(n) be the set of 4-Dyck paths with n up-steps of size 4, 4n down-steps of size 1 and never go below the x-axis. For every d in D(n), let peak(d) be the number of peaks in d. Then a(n) = Sum_{d in D(n)}2^(peak(d) - 1). - _Jun Yan_, Apr 13 2024 %F A243676 a(n) = hypergeom([1 - n, -4*n], [2], 2). - _Peter Luschny_, Apr 13 2024 %p A243676 a := proc(n) option remember; if n <= 1 then return 1 fi; %p A243676 -(a(n-2)*(-5440*n^7 + 42080*n^6 - 131548*n^5 + 212750*n^4 - 189160*n^3 + 90725*n^2 - 21387*n + 1890)+ a(n-1)*(-118660*n^7 + 739880*n^6 - 1876702*n^5 + 2492120*n^4 - 1855960*n^3 + 768230*n^2 - 161913*n + 13230)) / (5440*n^7 - 25760*n^6 + 43468*n^5 - 29510*n^4 + 4750*n^3 + 1945*n^2 - 468*n) end: %p A243676 seq(a(n), n = 0..20); # _Peter Luschny_, Apr 13 2024 %t A243676 a[n_] := Hypergeometric2F1[1 - n, -4 n, 2, 2]; %t A243676 Table[a[n], {n, 0, 20}] (* _Peter Luschny_, Apr 13 2024 *) %Y A243676 Appears to equal A260332(n)/2 for n > 0. - _N. J. A. Sloane_, Mar 28 2021 %Y A243676 The sequences listed in Yang-Jiang's Table 1 appear to be A006318, A001003, A027307, A034015, A144097, A243675, A260332, A243676. - _N. J. A. Sloane_, Mar 28 2021 %K A243676 nonn %O A243676 0,3 %A A243676 _N. J. A. Sloane_, Jun 14 2014 %E A243676 Added a(0)=1. - _N. J. A. Sloane_, Mar 28 2021 %E A243676 More terms from _Jun Yan_, Apr 13 2024