cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243704 Primes represented by the indefinite quadratic form -x^2+13xy+9y^2.

This page as a plain text file.
%I A243704 #11 Jun 20 2014 04:42:04
%S A243704 31,41,61,251,349,379,389,401,419,431,449,461,491,619,631,739,769,811,
%T A243704 821,829,1009,1061,1171,1181,1229,1231,1279,1289,1321,1361,1451,1471,
%U A243704 1499,1601,1699,1721,1759,1861,2081,2131,2239,2339,2341,2411,2551,2579,2591,2789
%N A243704 Primes represented by the indefinite quadratic form -x^2+13xy+9y^2.
%C A243704 Discriminant 205.
%C A243704 4*a(n) has the form 205*y^2 - z^2, where z = 2*x-13*y. [_Bruno Berselli_, Jun 20 2014]
%H A243704 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%o A243704 (PARI)
%o A243704 fc(a,b,c,M) = {
%o A243704 my(t1=List(),t2);
%o A243704 forprime(p=2,prime(M),
%o A243704 t2 = qfbsolve(Qfb(a,b,c),p);
%o A243704 if(t2 != 0, listput(t1,p))
%o A243704 );
%o A243704 Vec(t1)
%o A243704 };
%o A243704 fc(-1,13,9,600)
%Y A243704 Primes in A243703.
%K A243704 nonn
%O A243704 1,1
%A A243704 _N. J. A. Sloane_, Jun 17 2014