cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243712 Irregular triangular array of denominators of all positive rational numbers ordered as in Comments.

This page as a plain text file.
%I A243712 #6 Jun 11 2014 21:20:26
%S A243712 1,1,1,1,2,1,2,3,1,2,3,4,1,2,3,4,5,3,1,2,3,4,5,3,6,5,5,1,2,3,4,5,3,6,
%T A243712 5,5,7,7,8,7,1,2,3,4,5,3,6,5,5,7,7,8,7,8,9,11,11,9,4,1,2,3,4,5,3,6,5,
%U A243712 5,7,7,8,7,8,9,11,11,9,4,9,11,14,15,14,7
%N A243712 Irregular triangular array of denominators of all positive rational numbers ordered as in Comments.
%C A243712 Decree that (row 1) = (1), (row 2) = (2), and (row 3) = (3).  Thereafter, row n consists of the following numbers arranged in decreasing order: 1 + x for each x in (row n-1), together with x/(x + 1) for each x in row (n-3).  Every positive rational number occurs exactly once in the array.   The number of numbers in (row n) is A000930(n-1), for n >= 1.
%H A243712 Clark Kimberling, <a href="/A243712/b243712.txt">Table of n, a(n) for n = 1..1000</a>
%e A243712 First 8 rows of the array of all positive rationals:
%e A243712 1/1
%e A243712 2/1
%e A243712 3/1
%e A243712 4/1 .. 1/2
%e A243712 5/1 .. 3/2 .. 2/3
%e A243712 6/1 .. 5/2 .. 5/3 ... 3/4
%e A243712 7/1 .. 7/2 .. 8/3 ... 7/4 ... 4/5 .. 1/3
%e A243712 8/1 .. 9/2 .. 11/3 .. 11/4 .. 9/5 .. 4/3 .. 5/6 .. 3/5 .. 2/5
%e A243712 The denominators, by rows: 1,1,1,1,2,1,2,3,1,2,3,4,1,2,3,4,5,3,1,2,3,4,5,3,6,5,5,...
%t A243712 z = 13; g[1] = {1}; f1[x_] := x + 1; f2[x_] := -1/x; h[1] = g[1]; b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]]]];
%t A243712 h[n_] := h[n] = Union[h[n - 1], g[n - 1]]; g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]]; u = Table[g[n], {n, 1, z}]; u1 = Delete[Flatten[u], 10]
%t A243712 w[1] = 0; w[2] = 1; w[3] = 1; w[n_] := w[n - 1] + w[n - 3];
%t A243712 u2 = Table[Drop[g[n], w[n]], {n, 1, z}];
%t A243712 u3 = Delete[Delete[Flatten[Map[Reverse, u2]], 4], 4]
%t A243712 Denominator[u3]  (* A243712 *)
%t A243712 Numerator[u3]    (* A243713 *)
%t A243712 Denominator[u1]  (* A243714 *)
%t A243712 Numerator[u1]    (* A243715 *)
%Y A243712 Cf. A243713, A243714, A243715, A000930, A243613.
%K A243712 nonn,easy,tabf,frac
%O A243712 1,5
%A A243712 _Clark Kimberling_, Jun 09 2014