cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243713 Irregular triangular array of numerators of all positive rational numbers ordered as in Comments.

This page as a plain text file.
%I A243713 #4 Jun 11 2014 21:20:36
%S A243713 1,2,3,4,1,5,3,2,6,5,5,3,7,7,8,7,4,1,8,9,11,11,9,4,5,3,2,9,11,14,15,
%T A243713 14,7,11,8,7,6,5,5,3,10,13,17,19,19,10,17,13,12,13,12,13,10,7,7,8,7,4,
%U A243713 1,11,15,20,23,24,13,23,18,17,20,19,21,17,15,16
%N A243713 Irregular triangular array of numerators of all positive rational numbers ordered as in Comments.
%C A243713 Decree that (row 1) = (1), (row 2) = (3), and (row 3) = (3).  Thereafter, row n consists of the following numbers arranged in decreasing order:   1+x for each x in (row n-1), together with x/(x + 1) for each x in row (n-3).  Every positive rational number occurs exactly once in the array. The number of numbers in (row n) is A000930(n-1), for n >= 1.
%H A243713 Clark Kimberling, <a href="/A243713/b243713.txt">Table of n, a(n) for n = 1..1000</a>
%e A243713 First 8 rows of the array of all positive rationals:
%e A243713 1/1
%e A243713 2/1
%e A243713 3/1
%e A243713 4/1 ... 1/2
%e A243713 5/1 ... 3/2 ... 2/3
%e A243713 6/1 ... 5/2 ... 5/3 ... 3/4
%e A243713 7/1 ... 7/2 ... 8/3 ... 7/4 ... 4/5 ... 1/3
%e A243713 8/1 ... 9/2 ... 11/3 .. 11/4 .. 9/5 ... 4/3 ... 5/6 ... 3/5 ... 2/5
%e A243713 The numerators, by rows:  1,2,3,4,1,5,3,2,6,5,5,3,7,7,8,7,4,1,8,9,11,11,9,4,5,3,2,...
%t A243713 z = 13; g[1] = {1}; f1[x_] := x + 1; f2[x_] := -1/x; h[1] = g[1]; b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]]]];
%t A243713 h[n_] := h[n] = Union[h[n - 1], g[n - 1]]; g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]]; u = Table[g[n], {n, 1, z}]; u1 = Delete[Flatten[u], 10]
%t A243713 w[1] = 0; w[2] = 1; w[3] = 1; w[n_] := w[n - 1] + w[n - 3];
%t A243713 u2 = Table[Drop[g[n], w[n]], {n, 1, z}];
%t A243713 u3 = Delete[Delete[Flatten[Map[Reverse, u2]], 4], 4]
%t A243713 Denominator[u3]  (* A243712 *)
%t A243713 Numerator[u3]    (* A243713 *)
%t A243713 Denominator[u1]  (* A243714 *)
%t A243713 Numerator[u1]    (* A243715 *)
%Y A243713 Cf. A243712, A243714, A243715, A000930, A243613.
%K A243713 nonn,easy,tabf,frac
%O A243713 1,2
%A A243713 _Clark Kimberling_, Jun 09 2014