A243715 Irregular triangular array of numerators of all rational numbers ordered as in Comments.
1, -1, 2, -1, 0, 3, -1, 1, 4, -2, -1, 2, 3, 5, -3, -2, -1, 3, 5, 5, 6, -4, -3, -2, -1, 1, 4, 7, 8, 7, 7, -3, -5, -4, -3, -2, -1, 2, 3, 5, 4, 9, 11, 11, 9, 8, -5, -5, -6, -3, -5, -4, -3, -2, -1, 3, 5, 5, 6, 7, 8, 11, 7, 14, 15, 14, 11, 9, -7, -8, -7, -7, -5
Offset: 1
Examples
First 6 rows of the array of all positive rationals: 1/1 -1/1 ... 2/1 -1/2 ... 0/1 ... 3/1 -1/3 ... 1/2 ... 4/1 -2/1 .... -1/4 ... 2/3 ... 3/2 ... 5/1 -3/2 ... -2/3 ... -1/5 ... 3/4 ... 5/3 ... 5/2 ... 6/1 The numerators, by rows: 1,-1,2,-1,0,3,-1,1,4,-2,-1,2,3,5,-3,-2,-1,3,5,6,,...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..2000
Programs
-
Mathematica
z = 13; g[1] = {1}; f1[x_] := x + 1; f2[x_] := -1/x; h[1] = g[1]; b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]]]]; h[n_] := h[n] = Union[h[n - 1], g[n - 1]]; g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]]; u = Table[g[n], {n, 1, z}]; u1 = Delete[Flatten[u], 10] w[1] = 0; w[2] = 1; w[3] = 1; w[n_] := w[n - 1] + w[n - 3]; u2 = Table[Drop[g[n], w[n]], {n, 1, z}]; u3 = Delete[Delete[Flatten[Map[Reverse, u2]], 4], 4] Denominator[u3] (* A243712 *) Numerator[u3] (* A243713 *) Denominator[u1] (* A243714 *) Numerator[u1] (* A243715 *)
Comments