cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243716 Irregular triangle read by rows: T(n, k) = number of inequivalent (mod the dihedral group D_8 of order 8) ways to place k nonattacking knights on an n X n board.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 7, 9, 6, 2, 3, 18, 40, 66, 49, 30, 8, 3, 6, 43, 195, 609, 1244, 1767, 1710, 1148, 510, 154, 31, 6, 1, 6, 83, 618, 3375, 12329, 32524, 61731, 86748, 90059, 70128, 40770, 18053, 6089, 1643, 344, 61, 7, 1, 10, 156, 1751, 14181, 81900, 348541
Offset: 1

Views

Author

Heinrich Ludwig, Jun 10 2014

Keywords

Comments

The triangle is irregularly shaped: 1 <= k <= A030978(n). A030978(n) is the maximal number of knights that can be placed on an n X n board.
First row corresponds to n = 1.
Counting "inequivalent ways" means: Rotations or reflections of a placement of knights on the board are considered to be the same placement.

Examples

			The triangle begins:
  1;
  1,  2,   1,   1;
  3,  7,   9,   6,    2;
  3, 18,  40,  66,   49,   30,    8,    3;
  6, 43, 195, 609, 1244, 1767, 1710, 1148, 510, 154, 31, 6, 1;
  ...
		

Crossrefs

Cf. A030978, A008805 (column 1), A243717 (column 2), A243718 (column 3), A243719 (column 4), A243720 (column 5).