This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243732 #11 Nov 09 2024 18:10:44 %S A243732 1,1,1,1,1,1,2,1,2,3,1,2,3,4,1,2,3,4,5,1,2,3,4,5,6,1,2,3,4,5,6,7,3,1, %T A243732 2,3,4,5,6,7,3,8,5,5,1,2,3,4,5,6,7,3,8,5,5,9,7,8,7,1,2,3,4,5,6,7,3,8, %U A243732 5,5,9,7,8,7,10,9,11,11,9,1,2,3,4,5,6 %N A243732 Irregular triangular array of denominators of the positive rational numbers ordered as in Comments. %C A243732 Suppose that m >= 3, and define sets h(n) of positive rational numbers as follows: h(n) = {n} for n = 1..m, and thereafter, h(n) = Union({x+1: x in h(n-1)}, {x/(x+1) : x in h(n-m)}), with the numbers in h(n) arranged in decreasing order. Every positive rational lies in exactly one of the sets h(n). For the present array, put m = 5 and (row n) = h(n); the number of numbers in h(n) is A003520(n-1). (For m = 3, see A243712.) %H A243732 Clark Kimberling, <a href="/A243732/b243732.txt">Table of n, a(n) for n = 1..1000</a> %e A243732 First 11 rows of the array: %e A243732 1/1 %e A243732 2/1 %e A243732 3/1 %e A243732 4/1 %e A243732 5/1 %e A243732 6/1 ... 1/2 %e A243732 7/1 ... 3/2 ... 2/3 %e A243732 8/1 ... 5/2 ... 5/3 ... 3/4 %e A243732 9/1 ... 7/2 ... 8/3 ... 7/4 ... 4/5 %e A243732 10/1 .. 9/2 ... 11/3 .. 11/4 .. 9/5 ... 5/6 %e A243732 11/1 .. 11/2 .. 14/3 .. 15/4 .. 14/5 .. 11/6 .. 6/7 .. 1/3 %e A243732 The denominators, by rows: 1,1,1,1,1,1,2,1,2,3,1,2,3,4,1,2,3,4,5,6,1,2,3,4,5,6,7,3,... %t A243732 z = 23; g[1] = {1}; g[2] = {2}; g[3] = {3}; g[4] = {4}; g[5] = {5}; %t A243732 g[n_] := Reverse[Union[1 + g[n - 1], g[n - 5]/(1 + g[n - 5])]] %t A243732 Table[g[n], {n, 1, 9}] %t A243732 v = Flatten[Table[g[n], {n, 1, z}]]; %t A243732 v1 = Denominator[v]; (* A243732 *) %t A243732 v2 = Numerator[v]; (* A243733 *) %Y A243732 Cf. A243731, A243712, A243733, A003269. %K A243732 nonn,easy,tabf,frac %O A243732 1,7 %A A243732 _Clark Kimberling_, Jun 09 2014