This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243734 #26 Sep 21 2024 02:28:32 %S A243734 3,7,103,277,487,967,4783,5503,5923,8233,21013,26317,27943,41593, %T A243734 55213,78307,78853,86197,89653,94723,99013,123727,148153,157177, %U A243734 166627,172867,177883,179107,185893,192883,194713,203767,204517,223633,225217,227593,236893 %N A243734 Primes p for which p + 4, p^2 + 4 and p^3 + 4 are primes. %C A243734 This is a subset of the sequences: %C A243734 A023200: Primes p such that p + 4 is also prime. %C A243734 A243583: Primes p for which p + 4 and p^3 + 4 are primes. %C A243734 p is either 2 mod 5 or 3 mod 5, hence p^4 + 4 is 0 mod 5. %H A243734 Abhiram R Devesh, <a href="/A243734/b243734.txt">Table of n, a(n) for n = 1..1000</a> %e A243734 p = 3 is in this sequence because p + 4 = 7, p^2 + 4 = 13 and p^3 + 4 = 31 are all primes. %e A243734 p : p+4, p^2+4, p^3+4 %e A243734 7 : 11, 53, 347 %e A243734 103: 107, 10613, 1092731 %e A243734 277: 281, 76733, 21253937 %e A243734 487: 491, 237173, 115501307 %o A243734 (Python) %o A243734 import sympy.ntheory as snt %o A243734 n=2 %o A243734 while n > 1 and n < 10**6: %o A243734 n1=n+4 %o A243734 n2=((n**2)+4) %o A243734 n3=((n**3)+4) %o A243734 ##Check if n1, n2 and n3 are also primes. %o A243734 if snt.isprime(n1)== True and snt.isprime(n2)== True and snt.isprime(n3)== True: %o A243734 print(n, end=', ') %o A243734 n=snt.nextprime(n) %o A243734 (PARI) s=[]; forprime(p=2, 200000, if(isprime(p+4) && isprime(p^2+4) && isprime(p^3+4), s=concat(s, p))); s \\ _Colin Barker_, Jun 11 2014 %Y A243734 Cf. A023200, A243583. %K A243734 nonn,easy %O A243734 1,1 %A A243734 _Abhiram R Devesh_, Jun 09 2014