This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243747 #12 Feb 16 2025 08:33:22 %S A243747 1,-2,1,2,-2,0,1,-2,4,-2,-2,2,0,0,1,0,-1,-2,4,0,-2,0,-2,2,4,-4,0,2,0, %T A243747 0,1,-4,2,0,-1,2,-2,0,4,0,0,-2,-2,2,0,0,-2,0,5,-4,4,2,-4,0,0,-4,4,-2, %U A243747 0,2,0,0,1,4,-4,-2,2,0,0,0,-1,0,4,-2,-2,0,0,0 %N A243747 Expansion of (phi(q) - phi(q^2))^2 / 4 in powers of q where phi() is a Ramanujan theta function. %C A243747 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). %C A243747 Expansion of third basis element of modular forms space for Gamma_1(8) of weight 1 in powers of q. %H A243747 G. C. Greubel, <a href="/A243747/b243747.txt">Table of n, a(n) for n = 2..2500</a> %H A243747 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a> %H A243747 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a> %F A243747 Expansion of (q * f(-q, -q^7)^2 / psi(-q))^2 in powers of q where psi(), f() are Ramanujan theta functions. %F A243747 Euler transform of period 8 sequence [-2, 0, 2, 2, 2, 0, -2, -2, ...]. %F A243747 G.f.: (theta_3(x) - theta_3(x^2))^2 / 4 = (Sum_{k>0} x^(k^2) - x^(2k^2))^2. %F A243747 Convolution square of A143259. %e A243747 G.f. = q^2 - 2*q^3 + q^4 + 2*q^5 - 2*q^6 + q^8 - 2*q^9 + 4*q^10 - 2*q^11 + ... %t A243747 a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] - EllipticTheta[ 3, 0, q^2])^2 / 4, {q, 0, n}]; %o A243747 (PARI) {a(n) = if( n<2, 0, sum(k=1, n-1, (issquare(k) - issquare(2*k)) * (issquare(n - k) - issquare(2*n - 2*k))))}; %o A243747 (Sage) ModularForms( Gamma1(8), 1, prec=70).2 %o A243747 (Magma) Basis( ModularForms( Gamma1(8), 1), 70) [3]; %Y A243747 CF. A143259. %K A243747 sign %O A243747 2,2 %A A243747 _Michael Somos_, Jun 09 2014