This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243748 #23 Mar 06 2025 09:30:10 %S A243748 1,1,1,1,3,1,1,1,9,4,7,4,3,1,1,1,25,10,35,6,30,15,6,15,0,6,5,0,0,1,1, %T A243748 1,75,40,255,36,280,255,10,36,150,0,45,50,36,90,0,30,0,0,30,12,10,0,0, %U A243748 12,0,0,0,1,1,1,231,175,1295,126,1645,120,1575,70,378,1715,120,0,315,350,378,120,1435,0,0,0,245,126,120,0 %N A243748 Irregular triangle read by rows where T(n,k) is the number of subgroups of order d of the symmetric group S_n, where d is the k-th divisor of n!. %C A243748 The columns skip counting the subgroups of S_n with orders d that do not divide the order of S_n, n!, because such subgroups cannot exist. This is just a reduction of columns in the triangle by omitting a large number of zeros. %e A243748 There are T(3,2)=3 subgroups of S_3 of order 2, namely the groups generated by the permutations (1,2), (1,3) or (2,3). %e A243748 Triangle begins: %e A243748 1; %e A243748 1,1; %e A243748 1,3,1,1; %e A243748 1,9,4,7,4,3,1,1; %e A243748 1,25,10,35,6,30,15,6,15,0,6,5,0,0,1,1; %e A243748 ... %o A243748 (GAP) %o A243748 # GAP 4 %o A243748 LoadPackage("SONATA") ;; %o A243748 Print("\n") ; %o A243748 N := Factorial(7) ;; # adjusted to the maximum n below %o A243748 subS := EmptyPlist(N) ;; %o A243748 for n in [1..7] do %o A243748 for e in [1..N] do %o A243748 subS[e] := 0 ; %o A243748 od; %o A243748 g := SymmetricGroup(n) ; %o A243748 sg := Size(g) ; %o A243748 alls := Subgroups(g) ; %o A243748 for s in alls do %o A243748 o := Size(s) ; %o A243748 if o <= N then %o A243748 subS[o] := subS[o]+1 ;; %o A243748 fi; %o A243748 od ; %o A243748 for d in [1..N] do %o A243748 if ( sg mod d ) = 0 then %o A243748 Print(subS[d],",") ; %o A243748 fi; %o A243748 od; %o A243748 Print("\n") ; %o A243748 od; %Y A243748 Cf. A005432 (row sums), A001189 (column d=2), A027423 (row lengths), A218913, A277566, A284210. %K A243748 nonn,tabf %O A243748 1,5 %A A243748 _R. J. Mathar_, Jun 09 2014 %E A243748 Edited by _Peter Munn_, Mar 06 2025