This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243753 #28 Jan 24 2019 17:11:29 %S A243753 1,1,0,1,0,0,1,0,0,0,1,1,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,1,0, %T A243753 0,0,1,1,1,2,1,1,0,0,0,1,1,2,1,4,1,1,0,0,0,1,1,2,4,1,9,1,1,0,0,0,1,1, %U A243753 2,4,9,1,21,1,1,0,0,0,1,1,1,4,9,21,1,51,1,1,0,0,0 %N A243753 Number A(n,k) of Dyck paths of semilength n avoiding the consecutive step pattern given by the binary expansion of k, where 1=U=(1,1) and 0=D=(1,-1); square array A(n,k), n>=0, k>=0, read by antidiagonals. %H A243753 Alois P. Heinz, <a href="/A243753/b243753.txt">Antidiagonals n = 0..140, flattened</a> %e A243753 Square array A(n,k) begins: %e A243753 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A243753 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, ... %e A243753 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, ... %e A243753 0, 0, 0, 1, 1, 2, 1, 4, 4, 4, ... %e A243753 0, 0, 0, 1, 1, 4, 1, 9, 9, 9, ... %e A243753 0, 0, 0, 1, 1, 9, 1, 21, 21, 23, ... %e A243753 0, 0, 0, 1, 1, 21, 1, 51, 51, 63, ... %e A243753 0, 0, 0, 1, 1, 51, 1, 127, 127, 178, ... %e A243753 0, 0, 0, 1, 1, 127, 1, 323, 323, 514, ... %e A243753 0, 0, 0, 1, 1, 323, 1, 835, 835, 1515, ... %p A243753 A:= proc(n, k) option remember; local b, m, r, h; %p A243753 if k<2 then return `if`(n=0, 1, 0) fi; %p A243753 m:= iquo(k, 2, 'r'); h:= 2^ilog2(k); b:= %p A243753 proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1, %p A243753 `if`(t=m and r=1, 0, b(x-1, y+1, irem(2*t+1, h)))+ %p A243753 `if`(t=m and r=0, 0, b(x-1, y-1, irem(2*t, h))))) %p A243753 end; forget(b); %p A243753 b(2*n, 0, 0) %p A243753 end: %p A243753 seq(seq(A(n, d-n), n=0..d), d=0..14); %t A243753 A[n_, k_] := A[n, k] = Module[{b, m, r, h}, If[k<2, Return[If[n == 0, 1, 0]]]; {m, r} = QuotientRemainder[k, 2]; h = 2^Floor[Log[2, k]]; b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, 1, If[t == m && r == 1, 0, b[x-1, y+1, Mod[2*t+1, h]]] + If[t == m && r == 0, 0, b[x-1, y-1, Mod[2*t, h]]]]]; b[2*n, 0, 0]]; Table[ Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* _Jean-François Alcover_, Jan 27 2015, after _Alois P. Heinz_ *) %Y A243753 Columns give: 0, 1, 2: A000007, 3, 4, 6: A000012, 5: A001006(n-1) for n>0, 7, 8, 14: A001006, 9: A135307, 10: A078481 for n>0, 11, 13: A105633(n-1) for n>0, 12: A082582, 15, 16: A036765, 19, 27: A114465, 20, 24, 26: A157003, 21: A247333, 25: A187256(n-1) for n>0. %Y A243753 Main diagonal gives A243754 or column k=0 of A243752. %Y A243753 Cf. A242450, A243827, A243828, A243829, A243830, A243831, A243832, A243833, A243834, A243835, A243836. %K A243753 nonn,tabl %O A243753 0,40 %A A243753 _Alois P. Heinz_, Jun 09 2014