A243756 Triangle read by rows: T(n,k) = A242954(n)/(A242954(k) * A242954(n-k)).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 1, 1, 1, 4, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 1, 4, 4, 4, 1, 1, 1, 4, 4, 1, 1, 4, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 1, 4, 4, 4, 1, 4, 4, 4, 1
Offset: 0
Examples
The triangle begins: 1; 1, 1; 1, 1, 1; 1, 1, 1, 1; 1, 4, 4, 4, 1; 1, 1, 4, 4, 1, 1; 1, 1, 1, 4, 1, 1, 1; 1, 1, 1, 1, 1, 1, 1, 1; 1, 4, 4, 4, 1, 4, 4, 4, 1; 1, 1, 4, 4, 1, 1, 4, 4, 1, 1; 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
Links
- Tyler Ball, Tom Edgar, and Daniel Juda, Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem, Mathematics Magazine, Vol. 87, No. 2, April 2014, pp. 135-143.
- Tyler Ball and Daniel Juda, Dominance over N, Rose-Hulman Undergraduate Mathematics Journal, Vol. 13, No. 2, Fall 2013.
- Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
Programs
-
Sage
m=50 T=[0]+[4^valuation(i, 4) for i in [1..m]] Table=[[prod(T[1:i+1])/(prod(T[1:j+1])*prod(T[1:i-j+1])) for j in [0..i]] for i in [0..m-1]] [x for sublist in Table for x in sublist]
Comments