cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243756 Triangle read by rows: T(n,k) = A242954(n)/(A242954(k) * A242954(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 1, 1, 1, 4, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 1, 4, 4, 4, 1, 1, 1, 4, 4, 1, 1, 4, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 1, 4, 4, 4, 1, 4, 4, 4, 1
Offset: 0

Views

Author

Tom Edgar, Jun 09 2014

Keywords

Comments

The exponent of T(n,k) is the number of 'carries' that occur when adding k and n-k in base 4 using the traditional addition algorithm.
If T(n,k) != 0 mod 4, then n dominates k in base 4.

Examples

			The triangle begins:
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 4, 4, 4, 1;
1, 1, 4, 4, 1, 1;
1, 1, 1, 4, 1, 1, 1;
1, 1, 1, 1, 1, 1, 1, 1;
1, 4, 4, 4, 1, 4, 4, 4, 1;
1, 1, 4, 4, 1, 1, 4, 4, 1, 1;
1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
		

Crossrefs

Programs

  • Sage
    m=50
    T=[0]+[4^valuation(i, 4) for i in [1..m]]
    Table=[[prod(T[1:i+1])/(prod(T[1:j+1])*prod(T[1:i-j+1])) for j in [0..i]] for i in [0..m-1]]
    [x for sublist in Table for x in sublist]

Formula

T(n,k) = A242954(n)/(A242954(k) * A242954(n-k)).
T(n,k) = Product_{i=1..n} A234957(i)/(Product_{i=1..k} A234957(i)*Product_{i=1..n-k} A234957(i)).
T(n,k) = A234957(n)/n*(k/A234957(k)*T(n-1,k-1)+(n-k)/A234957(n-k)*T(n-1,k)).