This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243758 #20 Dec 25 2016 02:28:32 %S A243758 1,1,1,1,1,1,6,6,6,6,6,6,36,36,36,36,36,36,216,216,216,216,216,216, %T A243758 1296,1296,1296,1296,1296,1296,7776,7776,7776,7776,7776,7776,279936, %U A243758 279936,279936,279936,279936,279936,1679616,1679616,1679616,1679616,1679616,1679616,10077696 %N A243758 a(n) = Product_{i=1..n} A234959(i). %C A243758 This is the generalized factorial for A234959. %C A243758 a(0) = 1 as it represents the empty product. %H A243758 Reinhard Zumkeller, <a href="/A243758/b243758.txt">Table of n, a(n) for n = 0..1000</a> %H A243758 Tyler Ball, Tom Edgar, and Daniel Juda, <a href="http://dx.doi.org/10.4169/math.mag.87.2.135">Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem</a>, Mathematics Magazine, Vol. 87, No. 2, April 2014, pp. 135-143. %F A243758 a(n) = Product_{i=1..n} A234959(i). %F A243758 a(n) = 6^(A054895(n)). %t A243758 Table[Product[6^IntegerExponent[k, 6], {k, 1, n}], {n, 0, 20}] (* _G. C. Greubel_, Dec 24 2016 *) %o A243758 (Sage) %o A243758 S=[0]+[6^valuation(i,6) for i in [1..100]] %o A243758 [prod(S[1:i+1]) for i in [0..99]] %o A243758 (Haskell) %o A243758 a243758 n = a243758_list !! n %o A243758 a243758_list = scanl (*) 1 a234959_list %o A243758 -- _Reinhard Zumkeller_, Feb 09 2015 %o A243758 (PARI) valp(n,p)=my(s); while(n\=p, s+=n); s %o A243758 a(n)=6^valp(n,6) \\ _Charles R Greathouse IV_, Oct 03 2016 %Y A243758 Cf. A060828, A060818, A234959, A242954, A243757. %K A243758 nonn,easy %O A243758 0,7 %A A243758 _Tom Edgar_, Jun 10 2014