cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243766 Decimal numbers which give three prime numbers when split into three equal parts whose sum is prime. No leading zeros.

This page as a plain text file.
%I A243766 #19 Dec 06 2022 09:26:31
%S A243766 223,227,232,272,322,335,337,353,355,373,377,533,535,553,557,575,577,
%T A243766 722,733,737,755,757,773,775,111119,111131,111137,111161,111167,
%U A243766 111179,111313,111317,111319,111323,111329,111337,111343,111347,111359,111373,111379,111383
%N A243766 Decimal numbers which give three prime numbers when split into three equal parts whose sum is prime. No leading zeros.
%C A243766 It appears that the sequence is infinite.
%H A243766 Andreas Boe, <a href="/A243766/b243766.txt">Table of n, a(n) for n = 1..10000</a>
%e A243766 111329 -> 11 + 13 + 29 = 53 = prime.
%o A243766 (Python)
%o A243766 from sympy import isprime, primerange
%o A243766 from itertools import count, islice, product
%o A243766 def agen(): yield from (a*10**(2*i) + b*10**i + c for i in count(1) for a, b, c in product(primerange(10**(i-1), 10**i), repeat=3) if isprime(a+b+c))
%o A243766 print(list(islice(agen(), 42))) # _Michael S. Branicky_, Dec 04 2022
%o A243766 (PARI) first(n) = { my(res = List()); for(i = 1, oo, pow10 = 10^i; pow100 = 100^i; forprime(p = 10^(i-1), 10^i, firstidigs = pow100 * p; forprime(q = 10^(i-1), 10^i, pandq = p+q; first2idigs = firstidigs + pow10*q; forprime(r = 10^(i-1), 10^i, if(isprime(pandq + r), c = first2idigs + r; listput(res, c); if(#res >= n, return(res) ) ) ) ) ) ) } \\ _David A. Corneth_, Dec 04 2022
%K A243766 nonn,base
%O A243766 1,1
%A A243766 _Andreas Boe_, Jun 10 2014