A243780 Primes p for which p^i + 4 is prime for i = 1, 3 and 5.
7, 5503, 8779, 14629, 15877, 21013, 23599, 51199, 61483, 70237, 78163, 79333, 80149, 96667, 113089, 113359, 133153, 140053, 149377, 150889, 184039, 198967, 228199, 251287, 255637, 295843, 301123, 303613, 356929, 382843, 385393, 393709, 420037, 457363, 458119
Offset: 1
Examples
p=7 is in this sequence as p + 4, p^3 + 4, p^5 + 4 (11, 347, 16811) are all prime. p=5503 is in this sequence as p + 4 = 5507 (prime), p^3 + 4 = 166647398531 (prime) and p^5 + 4 = 5046584669419727747 (prime).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..250 from Abhiram R Devesh)
Programs
-
Mathematica
Select[Range[500000], PrimeQ[#] && AllTrue[#^{1, 3, 5} + 4, PrimeQ] &] (* Amiram Eldar, Apr 04 2020 *)
-
PARI
s=[]; forprime(p=2, 200000, if(isprime(p+4) && isprime(p^3+4) && isprime(p^5+4), s=concat(s, p))); s \\ Colin Barker, Jun 11 2014
-
Python
import sympy.ntheory as snt n=2 while n>1: n1=n+4 n2=((n**3)+4) n3=((n**5)+4) ##Check if n1 , n2 and n3 are also primes. if snt.isprime(n1)== True and snt.isprime(n2)== True and snt.isprime(n3)== True: print(n,n1,n2,n3) n=snt.nextprime(n)
Comments