cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243780 Primes p for which p^i + 4 is prime for i = 1, 3 and 5.

Original entry on oeis.org

7, 5503, 8779, 14629, 15877, 21013, 23599, 51199, 61483, 70237, 78163, 79333, 80149, 96667, 113089, 113359, 133153, 140053, 149377, 150889, 184039, 198967, 228199, 251287, 255637, 295843, 301123, 303613, 356929, 382843, 385393, 393709, 420037, 457363, 458119
Offset: 1

Views

Author

Abhiram R Devesh, Jun 10 2014

Keywords

Comments

This is a subsequence of:
A023200: Primes p such that p + 4 is also prime.
A243583: Primes p for which p + 4 and p^3 + 4 are prime.

Examples

			p=7 is in this sequence as p + 4, p^3 + 4, p^5 + 4 (11, 347, 16811) are all prime.
p=5503 is in this sequence as p + 4 = 5507 (prime), p^3 + 4 = 166647398531 (prime) and p^5 + 4 = 5046584669419727747 (prime).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[500000], PrimeQ[#] && AllTrue[#^{1, 3, 5} + 4, PrimeQ] &] (* Amiram Eldar, Apr 04 2020 *)
  • PARI
    s=[]; forprime(p=2, 200000, if(isprime(p+4) && isprime(p^3+4) && isprime(p^5+4), s=concat(s, p))); s \\ Colin Barker, Jun 11 2014
  • Python
    import sympy.ntheory as snt
    n=2
    while n>1:
        n1=n+4
        n2=((n**3)+4)
        n3=((n**5)+4)
        ##Check if n1 , n2 and n3 are also primes.
        if snt.isprime(n1)== True and snt.isprime(n2)== True and snt.isprime(n3)== True:
            print(n,n1,n2,n3)
        n=snt.nextprime(n)