cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243808 Position within the triangular array A226314(n)/A054531(n) of rationals x/y such that x < y, gcd(x,y)=1 and x+y odd.

Original entry on oeis.org

2, 5, 7, 9, 12, 14, 16, 20, 23, 25, 27, 29, 31, 33, 35, 38, 40, 44, 46, 48, 52, 54, 57, 59, 61, 63, 65, 67, 71, 73, 77, 80, 82, 84, 86, 88, 90, 92, 94, 96, 100, 102, 104, 107, 109, 113, 119, 121, 123, 125, 127, 129, 131, 133, 135, 138, 140
Offset: 1

Views

Author

Frank M Jackson, Jun 13 2014

Keywords

Comments

If {x,y} are used as the generators of primitive Pythagorean triples (a,b,c) where a=y^2-x^2, b=2x*y and c=x^2+y^2, then the above sequence enumerates all PPT's as a 1-to-1 mapping into the integers.

Examples

			.  j       {A226314(n),A054531(n)}, 1<=i<=j<=12 and n=i+j(j-1)/2
.  --   ------------------------------------------------------------
.   1:  1,1
.   2:  1,2 2,1
.   3:  1,3 2,3 3,1
.   4:  1,4 3,2 3,4 4,1
.   5:  1,5 2,5 3,5 4,5 5,1
.   6:  1,6 4,3 5,2 5,3 5,6 6,1
.   7:  1,7 2,7 3,7 4,7 5,7 6,7 7,1
.   8:  1,8 5,4 3,8 7,2 5,8 7,4 7,8 8,1
.   9:  1,9 2,9 7,3 4,9 5,9 8,3 7,9 8,9 9,1
.  10:  1,10 6,5 3,10 7,5 9,2 8,5 7,10 9,5 9,10 10,1
.  11:  1,11 2,11 3,11 4,11 5,11 6,11 7,11 8,11 9,11 10,11 11,1
.  12:  1,12 7,6 9,4 10,3 5,12 11,2 7,12 11,3 11,4 11,6 11,12 12,1 .
a(4)=9, as the 4th PPT is generated from the 9th term of the triangular array at index (3,4). This gives (x,y) as (3,4) and it generates the PPT (7,24,25). Conversely the PPT (7,24,25) gives (x,y) = (sqrt((25-7)/2), sqrt((25+7)/2)) = (3,4). It is the 9th term of the triangular array and the 4th term of the enumerating sequence.
		

Crossrefs

Programs

  • Mathematica
    ratmap[p_, q_] := (q(q-1)/2+p); mm=20; lst={}; Do[If[OddQ[m+n]&&GCD[m, n]==1, AppendTo[lst, n/m]], {m, 1, mm}, {n, 1, m}]; Sort@Table[ratmap[Numerator[lst[[k]]], Denominator[lst[[k]]]], {k, 1, Length[lst]}]