cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243813 Table read by antidiagonals: T(n,k) is the curvature (truncated to integer) of a circle in a variation of nested Pappus chains (see Comments for details).

This page as a plain text file.
%I A243813 #24 Mar 17 2024 07:43:43
%S A243813 1,1,1,1,1,3,1,1,1,5,1,1,1,2,9,1,1,1,1,3,13,1,1,1,1,2,5,19,1,1,1,1,1,
%T A243813 3,7,25,1,1,1,1,1,2,4,9,33,1,1,1,1,1,1,2,5,11,41,1,1,1,1,1,1,2,3,6,14,
%U A243813 51,1,1,1,1,1,1,1,2,4,7,17,61,1,1,1,1,1,1,1,2,3,5,9,21
%N A243813 Table read by antidiagonals: T(n,k) is the curvature (truncated to integer) of a circle in a variation of nested Pappus chains (see Comments for details).
%C A243813 Refer to the construction rule used in A243618. For this case, the curvature is defined by (-1/k, 1/(k-1), 1), the circle radius will diverge to infinity (zero curvature). The integral curvatures appearing as periodic, i.e., 2, 6, 6, 10, 30, 42, 28, 12, ..., = A083482(k-1). The integral curvatures seem to align as some sequence, e.g., 3, 7, 13, 21, 31, 43, ..., = A002061(k) and 9, 25, 49, ..., = A016754(k-1). See illustration.
%H A243813 Kival Ngaokrajang, <a href="/A243813/a243813.pdf">Illustration for k = 2..7</a>
%e A243813 Table begins:
%e A243813   n/k  2   3   4   5   6   7  ...
%e A243813    0   1   1   1   1   1   1  ...
%e A243813    1   1   1   1   1   1   1  ...
%e A243813    2   3   1   1   1   1   1  ...
%e A243813    3   5   2   1   1   1   1  ...
%e A243813    4   9   3   2   1   1   1  ...
%e A243813    5  13   5   3   2   1   1  ...
%e A243813    6  19   7   4   2   2   1  ...
%e A243813    7  25   9   5   3   2   2  ...
%e A243813    8  33  11   6   4   3   2  ...
%e A243813    9  41  14   7   5   3   2  ...
%e A243813   10  51  17   9   6   4   3  ...
%e A243813   11  61  21  11   7   5   3  ...
%e A243813   12  73  25  13   8   5   4  ...
%e A243813   ...
%o A243813 (Small Basic)
%o A243813 For k=2 to 100
%o A243813   a=-k
%o A243813   b=k-1
%o A243813   c=1
%o A243813   aa[0][k]=1
%o A243813   For n = 1 To 100
%o A243813     x=a*b*c
%o A243813     y=Math.Power(x*(a+b+c),1/2)
%o A243813     r=x/(a*b+a*c+b*c-2*y)
%o A243813     aa[n][k]= math.floor(1/r)
%o A243813     If 1/r-math.Floor(1/r)> 0.999999 Then
%o A243813       aa[n][k]=aa[n][k]+1
%o A243813     EndIf
%o A243813     c=r
%o A243813   EndFor
%o A243813 endFor
%o A243813 '=====================================
%o A243813 For t = 1 to 30
%o A243813   d=0
%o A243813   For nn=0 To t-1
%o A243813     kk=t+1-d
%o A243813     TextWindow.Write(aa[nn][kk]+", ")
%o A243813     d=d+1
%o A243813   EndFor
%o A243813 Endfor
%Y A243813 Cf. A243618, A083482, A002061, A016754.
%Y A243813 Cf. Column 1 = A080827(n), column 2 = A056827(n) + 1.
%Y A243813 Cf. Integral curvature in column 1..6: [A058331, A227776, A056107, A212656, A158558, A158604].
%K A243813 nonn,tabl
%O A243813 0,6
%A A243813 _Kival Ngaokrajang_, Jun 11 2014