This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243815 #24 Jun 26 2025 18:56:08 %S A243815 1,2,4,8,14,24,39,62,97,151,233,360,557,864,1344,2099,3290,5176,8169, %T A243815 12931,20524,32654,52060,83149,133012,213069,341718,548614,881572, %U A243815 1417722,2281517,3673830,5918958,9540577,15384490,24817031,40045768,64637963,104358789 %N A243815 Number of length n words on alphabet {0,1} such that the length of every maximal block of 0's (runs) is the same. %C A243815 Number of terms of A164710 with exactly n+1 binary digits. - _Robert Israel_, Nov 09 2015 %C A243815 From _Gus Wiseman_, Jun 23 2025: (Start) %C A243815 This is the number of subsets of {1..n} with all equal lengths of runs of consecutive elements increasing by 1. For example, the runs of S = {1,2,5,6,8,9} are ((1,2),(5,6),(8,9)), with lengths (2,2,2), so S is counted under a(9). The a(0) = 1 through a(4) = 14 subsets are: %C A243815 {} {} {} {} {} %C A243815 {1} {1} {1} {1} %C A243815 {2} {2} {2} %C A243815 {1,2} {3} {3} %C A243815 {1,2} {4} %C A243815 {1,3} {1,2} %C A243815 {2,3} {1,3} %C A243815 {1,2,3} {1,4} %C A243815 {2,3} %C A243815 {2,4} %C A243815 {3,4} %C A243815 {1,2,3} %C A243815 {2,3,4} %C A243815 {1,2,3,4} %C A243815 (End) %H A243815 Alois P. Heinz, <a href="/A243815/b243815.txt">Table of n, a(n) for n = 0..1000</a> %e A243815 0110 is a "good" word because the length of both its runs of 0's is 1. %e A243815 Words of the form 11...1 are good words because the condition is vacuously satisfied. %e A243815 a(5) = 24 because there are 32 length 5 binary words but we do not count: 00010, 00101, 00110, 01000, 01001, 01100, 10010, 10100. %p A243815 a:= n-> 1 + add(add((d-> binomial(d+j, d))(n-(i*j-1)) %p A243815 , j=1..iquo(n+1, i)), i=2..n+1): %p A243815 seq(a(n), n=0..50); # _Alois P. Heinz_, Jun 11 2014 %t A243815 nn=30;Prepend[Map[Total,Transpose[Table[Drop[CoefficientList[Series[ (1+x^k)/(1-x-x^(k+1))-1/(1-x),{x,0,nn}],x],1],{k,1,nn}]]],0]+1 %t A243815 Table[Length[Select[Subsets[Range[n]],SameQ@@Length/@Split[#,#2==#1+1&]&]],{n,0,10}] (* _Gus Wiseman_, Jun 23 2025 *) %Y A243815 Cf. A164710. %Y A243815 These subsets are ranked by A164707, complement A164708. %Y A243815 For distinct instead of equal lengths we have A384175, complement A384176. %Y A243815 For anti-runs instead of runs we have A384889, for partitions A384888. %Y A243815 For permutations instead of subsets we have A384892, distinct instead of equal A384891. %Y A243815 For partitions instead of subsets we have A384904, strict A384886. %Y A243815 The complement is counted by A385214. %Y A243815 A034839 counts subsets by number of maximal runs, for strict partitions A116674. %Y A243815 A049988 counts partitions with equal run-lengths, distinct A325325. %Y A243815 A329738 counts compositions with equal run-lengths, distinct A329739. %Y A243815 A384887 counts partitions with equal lengths of gapless runs, distinct A384884. %Y A243815 Cf. A010027, A044813, A069010, A268193, A383013, A384177, A384893. %K A243815 nonn %O A243815 0,2 %A A243815 _Geoffrey Critzer_, Jun 11 2014