A243817 Primes p for which p - 4 and p^3 - 4 are primes.
11, 17, 23, 41, 83, 101, 131, 227, 311, 383, 491, 503, 773, 827, 881, 887, 971, 1097, 1283, 1301, 1451, 1493, 1877, 2141, 2243, 2273, 2351, 2687, 2861, 2957, 3533, 3881, 3947, 4007, 4517, 4643, 5231, 5237, 5573, 5741, 6203, 7211, 7541, 7883, 7937, 8741, 9137, 9551, 10337, 11447
Offset: 1
Examples
p = 11 is in this sequence because p - 4 = 7 (prime) and p^3 - 4 = 1327 (prime). p = 17 is in this sequence because p - 4 = 13 (prime) and p^3 - 4 = 4909 (prime).
Links
- Abhiram R Devesh, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A046132.
Programs
-
Python
import sympy.ntheory as snt n=5 while n>1: n1=n-4 n2=((n**3)-4) ##Check if n1 and n2 are also primes. if snt.isprime(n1)== True and snt.isprime(n2)== True: print(n, n1, n2) n=snt.nextprime(n)
Comments