cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243837 Positive integers n such that prime(n+i) is a primitive root modulo prime(n+j) for any distinct i and j among 0, 1, 2.

Original entry on oeis.org

1, 698, 890, 911, 1003, 1141, 1413, 1717, 1807, 1947, 1948, 2216, 2254, 2329, 2455, 2768, 3169, 3224, 3537, 3624, 3737, 3766, 3896, 3904, 3921, 3959, 4027, 4275, 4359, 4427, 4649, 4708, 4845, 5051, 5378, 5386, 5396, 5896, 5897, 6100, 6223, 6226, 6351, 6377
Offset: 1

Views

Author

Zhi-Wei Sun, Jun 11 2014

Keywords

Comments

Conjecture: For any integer m > 0, there are infinitely many positive integers n such that prime(n+i) is a primitive root modulo prime(n+j) for any distinct i and j among 0, 1, ..., m.

Examples

			a(1) = 1 since prime(1) = 2 and prime(2) = 3 are primitive roots modulo prime(3) = 5, and 2 and 5 are primitive roots modulo 3, and 3 and 5 are primitive roots modulo 2.
a(2) = 698 since prime(698) = 5261 and prime(699) = 5273 are primitive roots modulo prime(700) = 5279, and 5261 and 5279 are primitive roots modulo 5273, and 5273 and 5279 are primitive roots modulo 5261.
		

Crossrefs

Programs

  • Mathematica
    dv[n_]:=Divisors[n]
    m=0;Do[Do[If[Mod[Prime[n+1]^(Part[dv[Prime[n]-1],j]),Prime[n]]==1||Mod[Prime[n+2]^(Part[dv[Prime[n]-1],j]),Prime[n]]==1,Goto[aa]],{j,1,Length[dv[Prime[n]-1]]-1}];Do[If[Mod[Prime[n]^(Part[dv[Prime[n+1]-1],i]),Prime[n+1]]==1||Mod[Prime[n+2]^(Part[dv[Prime[n+1]-1],i]),Prime[n+1]]==1,Goto[aa]],{i,1,Length[dv[Prime[n+1]-1]]-1}];Do[If[Mod[Prime[n]^(Part[dv[Prime[n+2]-1],j]),Prime[n+2]]==1||Mod[Prime[n+1]^(Part[dv[Prime[n+2]-1],j]),Prime[n+2]]==1,Goto[aa]],{j,1,Length[dv[Prime[n+2]-1]]-1}];m=m+1;Print[m," ",n];Label[aa];Continue,{n,1,7990}]