This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243838 #24 Mar 27 2021 14:43:00 %S A243838 1,1,2,5,14,42,132,429,1430,4862,16795,1,58783,3,208002,10,742865,35, %T A243838 2674314,126,9694383,462,35355954,1716,129638355,6435,477614390,24310, %U A243838 1767170813,92376,1,6563767708,352708,4,24464914958,1352046,16,91477363405,5200170,65 %N A243838 Number T(n,k) of Dyck paths of semilength n having exactly k (possibly overlapping) occurrences of the consecutive steps UDUUDDUUUUDUDDDDUDUD (with U=(1,1), D=(1,-1)); triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-1)/9)), read by rows. %C A243838 UDUUDDUUUUDUDDDDUDUD is a Dyck path that contains all sixteen consecutive step patterns of length 4. %H A243838 Alois P. Heinz, <a href="/A243838/b243838.txt">Rows n = 0..350, flattened</a> %e A243838 Triangle T(n,k) begins: %e A243838 : 0 : 1; %e A243838 : 1 : 1; %e A243838 : 2 : 2; %e A243838 : 3 : 5; %e A243838 : 4 : 14; %e A243838 : 5 : 42; %e A243838 : 6 : 132; %e A243838 : 7 : 429; %e A243838 : 8 : 1430; %e A243838 : 9 : 4862; %e A243838 : 10 : 16795, 1; %e A243838 : 11 : 58783, 3; %e A243838 : 12 : 208002, 10; %e A243838 : 13 : 742865, 35; %e A243838 : 14 : 2674314, 126; %e A243838 : 15 : 9694383, 462; %e A243838 : 16 : 35355954, 1716; %e A243838 : 17 : 129638355, 6435; %e A243838 : 18 : 477614390, 24310; %e A243838 : 19 : 1767170813, 92376, 1; %e A243838 : 20 : 6563767708, 352708, 4; %e A243838 : 21 : 24464914958, 1352046, 16; %p A243838 b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, %p A243838 `if`(x=0, 1, expand(b(x-1, y+1, [2, 2, 4, 5, 2, 4, %p A243838 8, 9, 10, 11, 2, 13, 5, 4, 2, 2, 18, 2, 20, 5][t]) %p A243838 +`if`(t=20, z, 1) *b(x-1, y-1, [1, 3, 1, 3, 6, 7, %p A243838 1, 3, 3, 3, 12, 1, 14, 15, 16, 17, 1, 19, 1, 3][t])))) %p A243838 end: %p A243838 T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)): %p A243838 seq(T(n), n=0..30); %t A243838 b[x_, y_, t_] := b[x, y, t] = If[x == 0, 1, Expand[If[y >= x - 1, 0, b[x - 1, y + 1, {2, 2, 4, 5, 2, 4, 8, 9, 10, 11, 2, 13, 5, 4, 2, 2, 18, 2, 20, 5}[[t]]]] + If[t == 20, z, 1]*If[y == 0, 0, b[x - 1, y - 1, {1, 3, 1, 3, 6, 7, 1, 3, 3, 3, 12, 1, 14, 15, 16, 17, 1, 19, 1, 3}[[t]]]]]]; %t A243838 T[n_] := CoefficientList[b[2n, 0, 1], z]; %t A243838 T /@ Range[0, 30] // Flatten (* _Jean-François Alcover_, Mar 27 2021, after _Alois P. Heinz_ *) %Y A243838 Row sums give A000108. %Y A243838 T(736522,k) = A243752(736522,k). %Y A243838 T(n,0) = A243753(n,736522). %Y A243838 Cf. A243820. %K A243838 nonn,tabf %O A243838 0,3 %A A243838 _Alois P. Heinz_, Jun 11 2014