cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243839 Positive integers n such that prime(n+i) is a primitive root modulo prime(n+j) for any distinct i and j among 0, 1, 2, 3.

Original entry on oeis.org

8560, 9719, 19228, 20509, 32117, 32352, 44512, 48086, 56967, 63104, 72233, 72538, 73481, 84831, 85736, 87999, 89747, 98220, 102116, 108246, 116228, 123982, 141709, 144344, 147685, 148099, 171214, 173916, 177322, 180836
Offset: 1

Views

Author

Zhi-Wei Sun, Jun 12 2014

Keywords

Comments

According to the general conjecture in A243837, this sequence should have infinitely many terms.

Examples

			a(1) = 8560 since prime(8560) = 88259, prime(8561) = 88261, and prime(8562) = 88289 are primitive roots modulo prime(8563) = 88301, and 88259, 88261, 88301 are primitive roots modulo 88289, and 88259, 88289, 88301 are primitive roots modulo 88261, and 88261, 88289, 88301 are primitive roots modulo 88259.
		

Crossrefs

Programs

  • Mathematica
    dv[n_]:=Divisors[n]
    p[n_]:=Prime[n]
    m=0; Do[Do[If[Mod[p[n]^(Part[dv[p[n+3]-1],i]),p[n+3]]==1||Mod[p[n+1]^(Part[dv[p[n+3]-1],i]),    p[n+3]]==1||Mod[p[n+2]^(Part[dv[p[n+3]-1],i]),p[n+3]]==1,Goto[aa]],{i,1,Length[dv[p[n+3]-1]]-1}]; Do[If[Mod[p[n]^(Part[dv[p[n+2]-1],i]),p[n+2]]==1||Mod[p[n+1]^(Part[dv[p[n+2]-1],i]),    p[n+2]]==1||Mod[p[n+3]^(Part[dv[p[n+2]-1],i]),p[n+2]]==1,Goto[aa]],{i,1,Length[dv[p[n+2]-1]]-1}]; Do[If[Mod[p[n]^(Part[dv[p[n+1]-1],i]),p[n+1]]==1||Mod[p[n+2]^(Part[dv[p[n+1]-1],i]),  p[n+1]]==1||Mod[p[n+3]^(Part[dv[p[n+1]-1],i]),p[n+1]]==1,Goto[aa]],{i,1,Length[dv[p[n+1]-1]]-1}]; Do[If[Mod[p[n+1]^(Part[dv[p[n]-1],i]),p[n]]==1||Mod[p[n+2]^(Part[dv[p[n]-1],i]), p[n]]==1||Mod[p[n+3]^(Part[dv[p[n]-1],i]),p[n]]==1,Goto[aa]],{i,1,Length[dv[p[n]-1]]-1}]; m=m+1;Print[m," ",n];Label[aa];Continue,{n,1,108246}]