A243841 Pair deficit of the most nearly equal partition of n into two parts using ceiling rounding of the expectations of n, floor(n/2) and n-floor(n/2), assuming equal likelihood of states defined by the number of 2-cycles.
0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 2, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1
Offset: 0
Examples
Trivially, for n = 0,1 no pairs are possible so a(0) and a(1) are 0. For n = 2, the expectation, E(n), equals 0.5. So a(2) = ceiling(E(2)) - (ceiling(E(1)) + ceiling(E(1))) = 1. For n = 5 = 2 + 3, E(5) = 20/13, E(2) = 0.5 and E(3) = 0.75 and a(5) = ceiling(E(5)) - (ceiling(E(2)) + ceiling(E(3))) = 0. Interestingly, for n = 8, E(8) = 532/191 and E(4) = 6/5, so a(n) = 3 - (2 + 2) = -1.
Comments