This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243859 #20 May 22 2025 10:21:38 %S A243859 7,133153,184039,356929,469363,982843,2154487,2552713,2686573,3378103, %T A243859 3847867,4270069,4341373,4564363,4584847,4964899,5366017,5600989, %U A243859 6185173,6592609,6595597,6629683,6768409,8232277,9028429,9964177,10009339,12107089,13266553,13600189 %N A243859 Primes p for which p^i + 4 is prime for i = 1, 3, 5 and 7. %C A243859 This is a subsequence of A243780: Primes p for which p^i + 4 is prime for i = 1, 3 and 5. %H A243859 Abhiram R Devesh, <a href="/A243859/b243859.txt">Table of n, a(n) for n = 1..141</a> %e A243859 p=7 is in this sequence as p + 4 = 11 (prime), p^3 + 4 = 347 (prime), p^5 + 4 = 16811 (prime), and p^7 + 4 = 823547 (prime). %p A243859 p := 2: %p A243859 for n from 1 do %p A243859 if isprime(p+4) and isprime(p^3+4) and isprime(p^5+4) and isprime(p^7+4) then %p A243859 print(p) ; %p A243859 end if; %p A243859 p := nextprime(p) ; %p A243859 end do: # _R. J. Mathar_, Jun 13 2014 %t A243859 Select[Prime[Range[900000]],AllTrue[#^{1,3,5,7}+4,PrimeQ]&] (* _Harvey P. Dale_, Apr 12 2022 *) %o A243859 (Python) %o A243859 import sympy.ntheory as snt %o A243859 n=2 %o A243859 while n>1: %o A243859 n1=n+4 %o A243859 n2=((n**3)+4) %o A243859 n3=((n**5)+4) %o A243859 n4=((n**7)+4) %o A243859 ##Check if n1 , n2, n3 and n4 are also primes. %o A243859 if snt.isprime(n1)== True and snt.isprime(n2)== True and snt.isprime(n3)== True and snt.isprime(n4)== True: %o A243859 print(n, n1, n2, n3, n4) %o A243859 n=snt.nextprime(n) %Y A243859 Cf. A023200, A243583, A243780. %K A243859 nonn %O A243859 1,1 %A A243859 _Abhiram R Devesh_, Jun 12 2014