A243861 Primes p for which p^i - 4 is prime for i = 1, 3, 5 and 7.
971, 12641, 205607, 228341, 276557, 412343, 1012217, 1101323, 1902881, 2171021, 2477411, 2692121, 4116377, 4311677, 6060953, 6182993, 6388913, 6444863, 8341121, 8551451, 9507527, 10523141, 10997411, 11444093, 14101361, 14656307, 14813147, 15435587, 17337521
Offset: 1
Examples
Prime p=971 is in this sequence because p-4 = 967 (prime), p^3-4 = 915498607 (prime), p^5-4 = 863169625893847 (prime), and p^7-4 = 813831713247384370687 (prime).
Links
- Abhiram R Devesh, Table of n, a(n) for n = 1..100
Programs
-
Python
import sympy.ntheory as snt n=2 while n>1: n1=n-4 n2=((n**3)-4) n3=((n**5)-4) n4=((n**7)-4) ##Check if n1 , n2, n3 and n4 are also primes. if snt.isprime(n1)== True and snt.isprime(n2)== True and snt.isprime(n3)== True and snt.isprime(n4)== True: print(n, n1, n2, n3, n4) n=snt.nextprime(n)
Comments