This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243872 #13 Dec 27 2020 19:44:04 %S A243872 1,4,16,65,263,1077,4419,18132,74368,304778,1247972,5105477,20867862, %T A243872 85219608,347724794,1417697157,5775652743,23512922998,95657223246, %U A243872 388912046916,1580241458120,6417249216667,26046042351889,105661066012240,428430870576913 %N A243872 Number of Dyck paths of semilength n having exactly 2 (possibly overlapping) occurrences of the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)). %H A243872 Alois P. Heinz, <a href="/A243872/b243872.txt">Table of n, a(n) for n = 9..400</a> %H A243872 Vaclav Kotesovec, <a href="/A243872/a243872.txt">Recurrence (of order 14)</a> %F A243872 a(n) ~ c * d^n * sqrt(n), where d = 3.992152919721564592666177480042427843835641823811... is the root of equation 1 - 2*d + d^2 - 6*d^5 + 2*d^6 - 4*d^9 + d^10 = 0, and c = 0.00000109315704269290466088403991068... . - _Vaclav Kotesovec_, Jul 16 2014 %p A243872 b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1, %p A243872 series(b(x-1, y+1, [2, 2, 4, 5, 6, 2, 4, 2, 10, 2][t])+`if`(t=10, %p A243872 z, 1)*b(x-1, y-1, [1, 3, 1, 3, 3, 7, 8, 9, 1, 3][t]), z, 3))) %p A243872 end: %p A243872 a:= n-> coeff(b(2*n, 0, 1), z, 2): %p A243872 seq(a(n), n=9..40); %t A243872 b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x==0, 1, Series[ %t A243872 b[x-1, y+1, {2, 2, 4, 5, 6, 2, 4, 2, 10, 2}[[t]]]+If[t==10, z, 1]* %t A243872 b[x-1, y-1, {1, 3, 1, 3, 3, 7, 8, 9, 1, 3}[[t]]], {z, 0, 3}]]]; %t A243872 a[n_] := Coefficient[b[2n, 0, 1], z, 2]; %t A243872 a /@ Range[9, 40] (* _Jean-François Alcover_, Dec 27 2020, after _Alois P. Heinz_ *) %Y A243872 Column k=2 of A243881. %Y A243872 Column k=738 of A243828. %K A243872 nonn %O A243872 9,2 %A A243872 _Alois P. Heinz_, Jun 13 2014