This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243881 #18 Mar 27 2021 15:15:24 %S A243881 1,1,2,5,14,41,1,129,3,419,10,1395,35,4737,124,1,16338,454,4,57086, %T A243881 1684,16,201642,6305,65,718855,23781,263,1,2583149,90209,1077,5, %U A243881 9346594,343809,4419,23,34023934,1315499,18132,105,124519805,5050144,74368,472,1 %N A243881 Number T(n,k) of Dyck paths of semilength n having exactly k (possibly overlapping) occurrences of the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)); triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-1)/4)), read by rows. %C A243881 UDUUUDDDUD is the only Dyck path of semilength 5 that contains all eight consecutive step patterns of length 3. %H A243881 Alois P. Heinz, <a href="/A243881/b243881.txt">Rows n = 0..300, flattened</a> %e A243881 Triangle T(n,k) begins: %e A243881 : 0 : 1; %e A243881 : 1 : 1; %e A243881 : 2 : 2; %e A243881 : 3 : 5; %e A243881 : 4 : 14; %e A243881 : 5 : 41, 1; %e A243881 : 6 : 129, 3; %e A243881 : 7 : 419, 10; %e A243881 : 8 : 1395, 35; %e A243881 : 9 : 4737, 124, 1; %e A243881 : 10 : 16338, 454, 4; %e A243881 : 11 : 57086, 1684, 16; %e A243881 : 12 : 201642, 6305, 65; %e A243881 : 13 : 718855, 23781, 263, 1; %e A243881 : 14 : 2583149, 90209, 1077, 5; %e A243881 : 15 : 9346594, 343809, 4419, 23; %e A243881 : 16 : 34023934, 1315499, 18132, 105; %p A243881 b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1, %p A243881 expand(b(x-1, y+1, [2, 2, 4, 5, 6, 2, 4, 2, 10, 2][t])+`if`(t=10, %p A243881 z, 1)*b(x-1, y-1, [1, 3, 1, 3, 3, 7, 8, 9, 1, 3][t])))) %p A243881 end: %p A243881 T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)): %p A243881 seq(T(n), n=0..20); %t A243881 b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x==0, 1, Expand[b[x-1, y+1, {2, 2, 4, 5, 6, 2, 4, 2, 10, 2}[[t]]] + If[t==10, z, 1]*b[x-1, y-1, {1, 3, 1, 3, 3, 7, 8, 9, 1, 3}[[t]]]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 1]]; Table[T[n], {n, 0, 20}] // Flatten (* _Jean-François Alcover_, Mar 31 2015, after _Alois P. Heinz_ *) %Y A243881 Columns k=0-10 give: A243870, A243871, A243872, A243873, A243874, A243875, A243876, A243877, A243878, A243879, A243880. %Y A243881 Row sums give A000108. %Y A243881 T(738,k) = A243752(738,k). %Y A243881 T(n,0) = A243753(n,738). %Y A243881 Cf. A243882. %K A243881 nonn,tabf %O A243881 0,3 %A A243881 _Alois P. Heinz_, Jun 13 2014