cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243881 Number T(n,k) of Dyck paths of semilength n having exactly k (possibly overlapping) occurrences of the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)); triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-1)/4)), read by rows.

This page as a plain text file.
%I A243881 #18 Mar 27 2021 15:15:24
%S A243881 1,1,2,5,14,41,1,129,3,419,10,1395,35,4737,124,1,16338,454,4,57086,
%T A243881 1684,16,201642,6305,65,718855,23781,263,1,2583149,90209,1077,5,
%U A243881 9346594,343809,4419,23,34023934,1315499,18132,105,124519805,5050144,74368,472,1
%N A243881 Number T(n,k) of Dyck paths of semilength n having exactly k (possibly overlapping) occurrences of the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)); triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-1)/4)), read by rows.
%C A243881 UDUUUDDDUD is the only Dyck path of semilength 5 that contains all eight consecutive step patterns of length 3.
%H A243881 Alois P. Heinz, <a href="/A243881/b243881.txt">Rows n = 0..300, flattened</a>
%e A243881 Triangle T(n,k) begins:
%e A243881 :  0 :        1;
%e A243881 :  1 :        1;
%e A243881 :  2 :        2;
%e A243881 :  3 :        5;
%e A243881 :  4 :       14;
%e A243881 :  5 :       41,       1;
%e A243881 :  6 :      129,       3;
%e A243881 :  7 :      419,      10;
%e A243881 :  8 :     1395,      35;
%e A243881 :  9 :     4737,     124,     1;
%e A243881 : 10 :    16338,     454,     4;
%e A243881 : 11 :    57086,    1684,    16;
%e A243881 : 12 :   201642,    6305,    65;
%e A243881 : 13 :   718855,   23781,   263,   1;
%e A243881 : 14 :  2583149,   90209,  1077,   5;
%e A243881 : 15 :  9346594,  343809,  4419,  23;
%e A243881 : 16 : 34023934, 1315499, 18132, 105;
%p A243881 b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
%p A243881      expand(b(x-1, y+1, [2, 2, 4, 5, 6, 2, 4, 2, 10, 2][t])+`if`(t=10,
%p A243881       z, 1)*b(x-1, y-1, [1, 3, 1, 3, 3, 7, 8, 9, 1, 3][t]))))
%p A243881     end:
%p A243881 T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
%p A243881 seq(T(n), n=0..20);
%t A243881 b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x==0, 1, Expand[b[x-1, y+1, {2, 2, 4, 5, 6, 2, 4, 2, 10, 2}[[t]]] + If[t==10, z, 1]*b[x-1, y-1, {1, 3, 1, 3, 3, 7, 8, 9, 1, 3}[[t]]]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 1]]; Table[T[n], {n, 0, 20}] // Flatten (* _Jean-François Alcover_, Mar 31 2015, after _Alois P. Heinz_ *)
%Y A243881 Columns k=0-10 give: A243870, A243871, A243872, A243873, A243874, A243875, A243876, A243877, A243878, A243879, A243880.
%Y A243881 Row sums give A000108.
%Y A243881 T(738,k) = A243752(738,k).
%Y A243881 T(n,0) = A243753(n,738).
%Y A243881 Cf. A243882.
%K A243881 nonn,tabf
%O A243881 0,3
%A A243881 _Alois P. Heinz_, Jun 13 2014