cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243883 Numerator of circle radius r(n) at constant unit length sagitta and chord length = n.

This page as a plain text file.
%I A243883 #28 Aug 04 2025 11:38:01
%S A243883 5,1,13,5,29,5,53,17,85,13,125,37,173,25,229,65,293,41,365,101,445,61,
%T A243883 533,145,629,85,733,197,845,113,965,257,1093,145,1229,325,1373,181,
%U A243883 1525,401,1685,221,1853,485,2029,265,2213,577,2405,313,2605,677,2813,365,3029
%N A243883 Numerator of circle radius r(n) at constant unit length sagitta and chord length = n.
%C A243883 Denominator of circle radius r(n) is A143025(n+2). The integral radius appearing at n = 2, 6, 10, 14, ..., = 1, 5, 13, 25, ..., respectively which is A001844(n/4 - 1/2). Floor (r(n)) = A001971(n). For the case of sagitta = n and chord length = 1, the numerator and the denominator will be A053755(n) and A008590(n) respectively. See illustration in links.
%H A243883 Colin Barker, <a href="/A243883/b243883.txt">Table of n, a(n) for n = 1..1000</a>
%H A243883 Kival Ngaokrajang, <a href="/A243883/a243883.pdf">Illustration for n = 1..5</a>
%H A243883 Wikipedia, <a href="http://en.wikipedia.org/wiki/Circle">Sagitta</a>
%F A243883 a(n) = numerator(n^2/8 + 1/2).
%F A243883 Empirical g.f.: -x*(x^11 +5*x^10 +x^9 +13*x^8 +2*x^7 +14*x^6 +2*x^5 +14*x^4 +5*x^3 +13*x^2 +x +5) / ((x -1)^3*(x +1)^3*(x^2 +1)^3). - _Colin Barker_, Jan 17 2015
%o A243883 (PARI) a(n) = numerator(n^2/8+1/2);
%Y A243883 Cf. A143025, A001844, A001971.
%K A243883 nonn,frac,easy
%O A243883 1,1
%A A243883 _Kival Ngaokrajang_, Jun 13 2014