This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243885 #18 May 22 2025 10:21:38 %S A243885 7,11,11,971,71394923,959316767,13342820302307 %N A243885 Smallest prime p_n which generates n primes of the form (p_n^i - 4) when i runs through the first n odd numbers. %C A243885 The first 4 entries of this sequence are the first entry of the following sequences: %C A243885 A046132 : Larger member p+4 of cousin primes (p, p+4). %C A243885 A243817 : Primes p for which p - 4 and p^3 - 4 are primes. %C A243885 A243818 : Primes p for which p^i - 4 is prime for i = 1, 3 and 5. %C A243885 A243861 : Primes p for which p^i - 4 is prime for i = 1, 3, 5 and 7. %e A243885 a(1) = 7 because 7-4 = 3 (prime), %e A243885 a(2) = 11 because 11-4 = 7 (prime) and 11^3 - 4 = 1327 (prime). %o A243885 (Python) %o A243885 import sympy %o A243885 ## isp_list returns an array of true/false for prime number test for a %o A243885 ## list of numbers %o A243885 def isp_list(ls): %o A243885 pt=[] %o A243885 for a in ls: %o A243885 if sympy.ntheory.isprime(a)==True: %o A243885 pt.append(True) %o A243885 return(pt) %o A243885 co=1 %o A243885 while co > 0: %o A243885 al=0 %o A243885 n=2 %o A243885 while al!=co: %o A243885 d=[] %o A243885 for i in range(0, co): %o A243885 d.append(int(n**((2*i)+1))-4) %o A243885 al=isp_list(d).count(True) %o A243885 if al==co: %o A243885 ## Prints prime number and its corresponding sequence d %o A243885 print(n, d) %o A243885 n=sympy.ntheory.nextprime(n) %o A243885 co=co+1 %Y A243885 Cf. A046132, A243817, A243818 and A243861. %K A243885 nonn,hard,more %O A243885 1,1 %A A243885 _Abhiram R Devesh_, Jun 13 2014 %E A243885 a(6) from _Bert Dobbelaere_, Jul 16 2019 %E A243885 a(7) from _Giovanni Resta_, Jul 18 2019