This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243911 #7 May 22 2025 10:21:38 %S A243911 18,0,9,0,0,0,6,0,2,1,2,17,3,0,0,11,0,5,2,0,1,0,0,0,0,0,14,0,2,7,0,1, %T A243911 7,0,0,7,2,5,2,0,3,0,1,0,0,0,9,0,2,0,18,3,9,1,0,0,6,5,2,0,2,0,3,0,1,0, %U A243911 0,0,2,3,7,11,0,0,0,1,14,5,2,0,0,0,7,0,0,0,1,0,2,9,3,0,11 %N A243911 Least number k such that n^k ends in two identical digits, or 0 if no such number exists. %C A243911 For all n > 1, the 2-digit ending of n^k repeats itself after a certain k-value. Thus a(n) = 0 is definite. %C A243911 a(10*n) = 2 for all n > 0. Thus there are infinitely many nonzero entries. a(5^n) = 0 for all n > 0. Thus there are infinitely many zero entries. %e A243911 2^18 = 262144 ends in two of the same digit. Thus a(2) = 18. %o A243911 (Python) %o A243911 def b(n,p): %o A243911 lst = [] %o A243911 count = 0 %o A243911 lst1 = [] %o A243911 for i in range(1,5**(n+2)): %o A243911 st = str(p**i) %o A243911 if len(st) >= n: %o A243911 if int(st[len(st)-n:len(st)]) not in lst: %o A243911 lst.append(int(st[len(st)-n:len(st)])) %o A243911 lst1.append(i) %o A243911 else: %o A243911 return len(lst)+min(lst1) %o A243911 def a(p): %o A243911 for i in range(1,b(2,p)+2): %o A243911 st = str(p**i) %o A243911 if int(st[len(st)-2:len(st)])%11==0: %o A243911 return i %o A243911 p = 2 %o A243911 while p < 100: %o A243911 if a(p): %o A243911 print(a(p),end=', ') %o A243911 else: %o A243911 print(0,end=', ') %o A243911 p += 1 %Y A243911 Cf. A005054, A216099. %K A243911 nonn,base %O A243911 2,1 %A A243911 _Derek Orr_, Jun 14 2014