This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243924 #11 Jun 19 2014 11:17:55 %S A243924 0,1,1,2,1,2,2,3,1,2,2,3,3,3,4,2,2,2,3,3,3,4,4,4,4,5,3,3,3,3,3,4,4,4, %T A243924 4,5,5,5,5,5,6,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,7,5,5,5,5,5,5,5,5, %U A243924 5,6,6,6,6,6,6,7,7,7,7,7,7,7,8,6,6,6 %N A243924 Irregular triangular array of taxicab norms of Gaussian integers in array G generated as at Comments. %C A243924 An array G of Gaussian integers is generated as follows: (row 1) = (0), and for n >=2, row n consists of the numbers x+1 and then i*x, where duplicates are deleted as they occur. Every Gaussian integer occurs exactly once in G. The taxicab norm of a Gaussian integer b+c*i is the taxicab distance (also known as Manhattan distance) from 0 to b+c*i, given by |b|+|c|. The norms of numbers in row n are given here in nondecreasing order. Conjecture: the number of numbers in row n is 4n-13 for n >= 5. %H A243924 Clark Kimberling, <a href="/A243924/b243924.txt">Table of n, a(n) for n = 1..2000</a> %e A243924 First 6 rows of G: %e A243924 0 %e A243924 1 %e A243924 2 .. i %e A243924 3 .. 2i .. i+1 ... -1 %e A243924 4 .. 3i .. 1+2i .. -2 .. i+2 .. -1+i . -i %e A243924 5 .. 4i .. 1+3i .. -3 .. 2+2i . -2+i . -2i . i+3 . -1+2i . -1-i . 1-i %e A243924 The corresponding taxicab norms follow: %e A243924 0 %e A243924 1 %e A243924 1 2 %e A243924 1 2 2 3 %e A243924 2 2 1 3 3 3 4 %e A243924 3 3 2 3 2 4 2 4 4 4 5 %e A243924 Each row is then arranged in nondecreasing order: %e A243924 0 %e A243924 1 %e A243924 1 2 %e A243924 1 2 2 3 %e A243924 1 2 2 3 3 3 4 %e A243924 2 2 2 3 3 3 4 4 4 4 5 %t A243924 z = 10; g[1] = {0}; f1[x_] := x + 1; f2[x_] := I*x; h[1] = g[1]; %t A243924 b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]]]]; %t A243924 h[n_] := h[n] = Union[h[n - 1], g[n - 1]]; %t A243924 g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]] %t A243924 Table[g[n], {n, 1, z}] (* the array G *) %t A243924 v = Table[Abs[Re[g[n]]] + Abs[Im[g[n]]], {n, 1, z}] %t A243924 w = Map[Sort, v] (* A243924, rows *) %t A243924 w1 = Flatten[w] (* A243924, sequence *) %Y A243924 Cf. A233694, A226080. %K A243924 nonn,easy,tabf %O A243924 1,4 %A A243924 _Clark Kimberling_, Jun 17 2014