cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243924 Irregular triangular array of taxicab norms of Gaussian integers in array G generated as at Comments.

This page as a plain text file.
%I A243924 #11 Jun 19 2014 11:17:55
%S A243924 0,1,1,2,1,2,2,3,1,2,2,3,3,3,4,2,2,2,3,3,3,4,4,4,4,5,3,3,3,3,3,4,4,4,
%T A243924 4,5,5,5,5,5,6,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,7,5,5,5,5,5,5,5,5,
%U A243924 5,6,6,6,6,6,6,7,7,7,7,7,7,7,8,6,6,6
%N A243924 Irregular triangular array of taxicab norms of Gaussian integers in array G generated as at Comments.
%C A243924 An array G of Gaussian integers is generated as follows: (row 1) = (0), and for n >=2, row n consists of the numbers  x+1 and then i*x, where duplicates are deleted as they occur.  Every Gaussian integer occurs exactly once in G.  The taxicab norm of a Gaussian integer b+c*i is the taxicab distance (also known as Manhattan distance) from 0 to b+c*i, given by |b|+|c|.  The norms of numbers in row n are given here in nondecreasing order. Conjecture: the number of numbers in row n is 4n-13 for n >= 5.
%H A243924 Clark Kimberling, <a href="/A243924/b243924.txt">Table of n, a(n) for n = 1..2000</a>
%e A243924 First 6 rows of G:
%e A243924 0
%e A243924 1
%e A243924 2 .. i
%e A243924 3 .. 2i .. i+1 ... -1
%e A243924 4 .. 3i .. 1+2i .. -2 .. i+2 .. -1+i . -i
%e A243924 5 .. 4i .. 1+3i .. -3 .. 2+2i . -2+i . -2i . i+3 . -1+2i . -1-i . 1-i
%e A243924 The corresponding taxicab norms follow:
%e A243924 0
%e A243924 1
%e A243924 1 2
%e A243924 1 2 2 3
%e A243924 2 2 1 3 3 3 4
%e A243924 3 3 2 3 2 4 2 4 4 4 5
%e A243924 Each row is then arranged in nondecreasing order:
%e A243924 0
%e A243924 1
%e A243924 1 2
%e A243924 1 2 2 3
%e A243924 1 2 2 3 3 3 4
%e A243924 2 2 2 3 3 3 4 4 4 4 5
%t A243924 z = 10; g[1] = {0}; f1[x_] := x + 1; f2[x_] := I*x; h[1] = g[1];
%t A243924 b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]]]];
%t A243924 h[n_] := h[n] = Union[h[n - 1], g[n - 1]];
%t A243924 g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]]
%t A243924 Table[g[n], {n, 1, z}] (* the array G *)
%t A243924 v = Table[Abs[Re[g[n]]] + Abs[Im[g[n]]], {n, 1, z}]
%t A243924 w = Map[Sort, v] (* A243924, rows *)
%t A243924 w1 = Flatten[w]  (* A243924, sequence *)
%Y A243924 Cf. A233694, A226080.
%K A243924 nonn,easy,tabf
%O A243924 1,4
%A A243924 _Clark Kimberling_, Jun 17 2014