cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243925 Irregular triangular array of denominators of the positive rational numbers ordered as in Comments.

This page as a plain text file.
%I A243925 #5 Jun 19 2014 11:18:17
%S A243925 1,1,1,1,1,3,1,1,2,3,1,1,5,2,3,1,1,1,2,3,5,2,3,1,3,1,3,7,7,5,3,5,2,3,
%T A243925 1,3,4,5,5,4,7,7,5,3,5,2,3,1,1,5,7,5,13,7,13,9,5,4,7,7,7,5,3,5,2,3,1,
%U A243925 1,1,3,5,4,6,6,4,9,9,7,8,5,13,7,13,9,5
%N A243925 Irregular triangular array of denominators of the positive rational numbers ordered as in Comments.
%C A243925 Decree that (row 1) = (1).  For n >=2, row n consists of numbers in increasing order generated as follows:  x+1 for each x in row n-1 together with -2/x for each nonzero x in row n-1, where duplicates are deleted as they occur.  The number of numbers in row n is A243927(n).   Conjecture:  every rational number occurs exactly once in the array.
%H A243925 Clark Kimberling, <a href="/A243925/b243925.txt">Table of n, a(n) for n = 1..2500</a>
%e A243925 First 7 rows of the array of rationals:
%e A243925 1/1
%e A243925 -2/1 ... 2/1
%e A243925 -1/1 ... 3/1
%e A243925 -2/3 ... 0/1 ... 4/1
%e A243925 -1/2 ... 1/3 ... 5/1
%e A243925 -6/1 ... -2/5 .. 1/2 ... 4/3 ... 6/1
%e A243925 -5/1 ... -4/1 .. -3/2 .. -1/3 .. 3/5 .. 3/2 .. 7/3 .. 7/1
%e A243925 The denominators, by rows:  1,1,1,1,1,3,1,1,2,3,1,1,5,2,3,1,1,1,2,3,5,2,3,1.
%t A243925 z = 13; g[1] = {1}; f1[x_] := x + 1; f2[x_] := -2/x; h[1] = g[1];
%t A243925 b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]]]];
%t A243925 h[n_] := h[n] = Union[h[n - 1], g[n - 1]];
%t A243925 g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]]
%t A243925 u = Table[g[n], {n, 1, z}]
%t A243925 v = Delete[Flatten[u], 12]
%t A243925 Denominator[v] (* A243925 *)
%t A243925 Numerator[v]   (* A243926 *)
%Y A243925 Cf. A243926, A243927, A242359, A243712, A243928.
%K A243925 nonn,easy,tabf,frac
%O A243925 1,6
%A A243925 _Clark Kimberling_, Jun 15 2014